Использование теплонасосных установок в охлаждении. Типы теплонасосных установок

Как известно, углубление скважины осуществляется разрушением забоя долотом. При этом в скважине накапливается выбуренный шлам, который необходимо постоянно выносить с забоя для продолжения бурения. Удаление продуктов разрушения при бурении скважин может осуществляться несколькими способами, основными из которых являются следующие: гидравлический, пневматический, комбинированный (гидропневматический или пневмогидра-влический).

При гидравлическом способе продукты разрушения удаляются с забоя и транспортируются на поверхность потоком жидкости, движущейся в скважине с определенной скоростью. Жидкость называется буровым промывочным раствором или просто буровым раствором (БР) (рисунок 1.1, а ).

Буровой раствор закачивается буровым насосом в бурильные трубы, нагнетается к забою, омывает его и, подхватив частички выбуренной породы, по затрубному пространству выносит их на поверхность, где они осаждаются, главным образом, принудительно с помощью специальных очистных устройств.

Технология пневматического способа заключается в выносе продуктов разрушения из скважины потоком газа, чаще всего, сжатого воздуха. Кроме сжатого воздуха используют выхлопные газы двигателей внутреннего сгорания (ДВС), природный газ, азот. Всю их совокупность называют газообразными агентами (рисунок 1.1, б )..

Рисунок 1.1 – Схема различных способов удаления продуктов разрушения горной породы (шлама) при бурении.

Из газообразных агентов первым был испытан природный газ. Произошло это в сентябре 1932 г. при бурении нефтяной скважины глубиной 2680 м. в штате Техас США. В этом же штате в 1950 г. для удаления продуктов разрушения при бурении сейсмических скважин впервые начали использовать сжатый воздух.

При комбинированном способе продукты разрушения удаляются из скважины потоком газожидкостной смеси (ГЖС) при одновременной работе бурового насоса и компрессора (рисунок 1.1 в)..

Типы ГЖС:

а) аэрированные буровые растворы (впервые были использованы в мае 1953 г. в штате Юта США);

б) пены (впервые были применены в 1962 г. в штате Невада при бурении скважины диаметром 1630 мм на испытательном полигоне по атомной энергии США).

Понятие «буровой раствор» охватывает широкий круг жидких, суспензионных и аэрированных сред, имеющих различные составы и свойства, но не включает аэрозоли (бурение с продувкой воздухом или газом). Это, например, вода, заливаемая в ствол при бурении шнековым буром; утяжеленный глинистый раствор, применяемый в разведочных скважинах, чтобы устранить возможность выброса при разбуривании пластов высокого давления; пена, используемая для выноса шлама из скважины, которую бурят на воду в ледниковых отложениях; бентонитовая суспензия, служащая для поддержания устойчивости стенок при проводке шурфа; сложная промывочная система, приготовляемая на основе нефти с добавкой эмульгаторов, стабилизирующих и структурообразующих реагентов, а также закупоривающего материала, для разбуривания пластов с температурами более 260°С, содержащих коррозионно-агрессивные газы.

7. ТВЕРДОСПЛАВНОЕ БУРЕНИЕ

При твердосплавном бурении резец твердосплавной коронки под действием осевой нагрузки совершает поступательное движение вниз на некоторую глубину h и при приложении крутящего момента перемещается по кругу, вызывая скалывание или резание породы. В результате наложения двух перемещений резец будет совершать движение по винтовой линии. Поскольку глубина внедрения резца небольшая (несколько миллиметров) по сравнению с диаметром скважины, можно принять, что угол наклона плоскости забоя равен нулю. В связи с тем, что на резец действуют две силы (осевая нагрузка Р и сила резания F p , создаваемая крутящим моментом), результирующая (равнодействующая) этих сил R при клиновидной форме резца будет действовать по наклонной плоскости I-I , располагающейся под некоторым углом γ к направлению действия осевой нагрузки. Равнодействующая сила R вызовет в месте контакта резца с породой появление упругих деформаций в виде поверхностей равных напряжений. При этом сферические поверхности приобретают вытянутую вдоль равнодействующей эллипсоидную форму (рис. 4.3).

Разрушение породы происходит по поверхностям максимальных напряжений, превышающих прочность породы на сдвиг. Такие поверхности появляются перед передней гранью резца в зоне сжатия, по которым и происходит скалывание породы. Задняя грань резца под действием силы Р будет оказывать давление на породу и сминать ее. Позади перемещающегося резца возникает зона растяжения, вызывающая ослабление связей в породе и образование микротрещин (1).

Внедрению резца в породу (рис. 4.4) будет препятствовать сопротивление породы в виде двух реакций: N 1 и N 2 .

Сила N 1 определяется сопротивлением породы разрушению на площадке S см т.е. площадь задней грани, находящейся в контакте с породой, и пределом твердости породы на вдавливание Н b:

N 1 = S см Н b sinα . (4.8)

Сила N 2 возникает в результате движения внедряющегося резца и направлена против горизонтального перемещения. Значение этой силы определяется сопротивлением породы скалыванию σ и площадью скалывания S сk , зависящей от угла внутреннего трения породы φ:

N 2 = σS сk . (4.9)

Перемещение резца под действием равнодействующей силы R по плоскости /-/ вызовет появление сил трения на передней грани F = f N 1 { и на задней грани F 2 = f N 2 ; коэффициент трения породы о резец f = tgφ. Проекции сил, действующих на резец, на горизонтальную и вертикальную плоскости, выражаются следующими уравнениями:

Определяя из уравнения (4.10)

и подставляя это выражение в уравнение (4.11), найдем значение N 1:

(4.12)

Величину N 1 можно также определить из выражения

где H b sinα = N y - удельное давление на задней грани резца; h - глубина внедрения резца; b - ширина резца; h / cosα = а - ширина площадки смятия.

Из выражений (4.12) и (4.13) определим

(4.14)

В существующих коронках угол α = 72°, поэтому tgα = 3,08. Для угла α = 72° имеем η = 0,94. Так как в современной конструкции коронок b = 8,5 мм, формула (4.14) упрощается:

(4.15)

За время t коронка внедряется в породу на величину

где Р - нагрузка на резец; n - частота вращения коронки; m - число резцов в коронке; H b - твердость породы.

Произведение Рm = G представляет собой осевую нагрузку на коронку.

Механическая скорость бурения определяется из выражения

Таким образом, механическая скорость бурения находится в прямой зависимости от осевой нагрузки на коронку, скорости ее вращения и обратно пропорциональна твердости горной породы. Следует отметить, что это выражение справедливо для коронки с незатупившимися резцами. По мере износа резцов в коронке значение G необходимо увеличивать.

Технология.

Твердосплавными коронками проходят до 40 % ежегодного объема геологоразведочных скважин. Ими можно успешно бу­рить почти все осадочные, а также многие изверженные и ме - таморфизованные породы от I до VII категории по буримости включительно. Самозатачивающиеся твердосплавные коронки эффективны в не содержащих кварц твердых породах (ба­зальты, габбро и др.) VIII-IX категорий по буримости.

Забурииание скважины производится после полного завер­шения монтажных работ, опробования работоспособности всех агрегатов и приемки буровой по акту, который составляется с участием руководства ГРП, инженера по технике безопасно­сти и представителя профсоюзной организации.

Перед забуриванием особое внимание уделяется правильно­сти и надежности установки бурового станка и угла наклона вращателя. В случае забуривапия вертикальной скважины пра­вильность установки вращателя проверяется с помощью отвеса, пропущенного с ролнка кронблока через шпиндель вращателя.

Технологические параметры режима твердосплавного буре­ния, как и любой другой его разновидности,- это те факторы процесса бурения, которые могут быть в любой момент произ­вольно изменены для получения оптимального их сочетания, обеспечивающего максимальную производительность. При меха­ническом вращательном бурении с промывкой (или продувкой) к ним относятся - осевая нагрузка па нородоразрушающнй ин­струмент, частота вращения снаряда и объемный расход очи­стного агента в единицу времени. Иногда к параметрам буре­ния относят также качество промывочной жидкости или очист­ного агента (надо учитывать, что этот фактор не может быть изменен сразу).

Главная задача буровика-техполога - добиваться оптималь­ного сочетания параметров (оптимального режима бурения), обеспечивающего возможно более высокие в данных конкрет­ных геолого-технических условиях технико-экономические пока­затели при высоком качестве проведения скважин.

Наиболее эффективным при бурении разрушением горных пород является объемное, поэтому нагрузка иа резец должна быть не меньше сопротивления породы на вдавливание:

где С0 - усилие вдавливания резца, Н; рш - твердость породы, Па; s - площадь контакта резца с опорой или площадь давле­ния, см2.

Следовательно, осевая нагрузка должна быть в общем тем больше, чем тверже горная порода. Величину С0 выбирают с учетом прочности твердосплавных резцов. Рекомендуемые на­грузки на один основной (объемный) резец приведены в табл.

6.13, которую можно использовать также при выборе типа твер­досплавной коронки, соответствующего определенной категории пород по буримости.

Осевая нагрузка на коронку определяется расчетом по фор­муле

где m - число основных резцов в коронке определенного типа и диаметра.

8. Алмазное бурение предложено в 1862 швейцарским часовщиком Ж. Лешо для бурения при проходке тоннелей и затем нашло применение при разведке и эксплуатации месторождений полезных ископаемых. Забойный буровой снаряд при алмазном бурении состоит из буровой алмазной коронки или долота, алмазного расширителя, сохраняющего диаметр скважины при износе коронки, кернорвательного устройства, колонковой трубы и колонны бурильных труб.

При поисках и разведке месторождений полезных ископаемых применяют алмазные буровые коронки и частично алмазныедолота (диаметры 36, 46, 59, 76, 93, 112 мм); при бурении глубоких эксплуатационных скважин на нефть и газ - главным образом долота (диаметры 140, 159, 188, 212, 242 мм). Алмазы в матрице коронки располагают слоями (от 1 до 3) либо их равномерно перемешивают с материалом матрицы (т.н. импрегнированные коронки). С учётом характера проходимых пород твёрдость матрицы колеблется от 10 до 50 HRC (чем крепче и абразивнее порода, тем твёрже матрица). Для армирования коронок используют технические алмазы (главным образом борт).

Для изготовления однослойных и многослойных применяют алмазы размером 20-100 зёрен в 1 карат; для импрегнированных, использующихся при бурении очень крепких, абразивных трещиноватых горных пород - от 120 до 1200 зёрен в 1 карате и более. По расположению в инструменте различают объёмные алмазы для торца коронки и более крупные подрезные, помещаемые на боковой поверхности. Например, в однослойную коронку диаметром 46 мм вставляют 6-8 карат алмазов, 59 мм - 10-12 (из них 60% объёмных и 40% подрезных).

Способ изготовления матриц алмазных буровых долот тот же, что и для алмазных коронок, но алмазы применяют более крупные - 0,05-0,34 карат (например, на долото диаметром 188 мм расходуется 400-650 карат, или 2000-2500 зёрен алмазов). Ресурс алмазных породоразрушающих инструментов в 8-10 раз больше по сравнению с другими инструментами. Высокая производительность алмазного бурения (в среднем проходка алмазного долота в 19 раз больше, чем шарошечного) достигается за счёт применения больших частот вращения бурового снаряда (до 2000 об/мин и более).

Наибольший эффект алмазное бурение даёт при использовании буровых коронок малых диаметров (49-76 мм), при высоких частотах вращения и удельной нагрузке на рабочем торце коронки 5-15 МПа. Алмазное бурение применяют обычно в специальных условиях, характеризующихся низкой механической скоростью, для бурения скважин малого диаметра и при использовании высокооборотных забойных двигателей. В середине 1970-х гг. объём алмазного бурения составлял 1% (в районах активного бурения 10%) общего объёма бурения в мире (в CCCP 3,9%).

За последний год тепловые насосы заняли свою нишу на российском климатическом рынке в числе других популярных технологий. Обсуждение достоинств и недостатков теплонасосных установок (ТНУ) проходило как на страницах отраслевой прессы, так и на тематических конференциях и круглых столах. О тепловых насосах в последнее время появилось много информации - как в русскоязычном Интернет, так и в специализированных СМИ. Тем не менее, по–прежнему крайне мало публикаций об интегрированных теплонасосных системах. Цель данной статьи - несколько восполнить этот пробел, обобщить некоторые из вопросов, возникающих у специалистов при первом знакомстве с кольцевыми теплонаносными системами, и коротко ответить на них.

Итак, про тепловые насосы известно, что это климатическое оборудование, способное утилизировать тепло окружающей среды, с помощью компрессора поднимать температуру теплоносителя до нужного уровня и передавать это тепло туда, где оно необходимо.

Извлечь из окружающей среды тепло можно почти всегда. Ведь "холодная вода" - понятие субъективное, основанное на наших ощущениях. Даже самая холодная речная вода содержит некоторое количество теплоты. Но известно, что тепло переходит только от более нагретого тела к более холодному. Тепло можно принудительно направить от холодного тела к теплому, тогда холодное тело еще больше остынет, а теплое нагреется. Используя тепловой насос, который "выкачивает" тепло из воздуха, речной воды или земли, еще более понижая их температуру, можно обогреть здание. В классическом случае считается, что, затрачивая на работу 1 кВт электроэнергии, ТНУ может произвести от 3 до 6 кВт тепловой энергии. На практике это означает, что мощностью двух–трех бытовых лампочек в зимний период можно обогреть жилую комнату средних размеров. Летом, работая в обратном режиме, тепловой насос может охлаждать воздух в помещениях здания. Тепло из здания будет удаляться, поглощаясь атмосферой, рекой или землей.

В настоящее время имеется огромное разнообразие теплонасосных установок, что позволяет широко применять их в промышленности, сельском хозяйстве, в ЖКХ. В качестве примера применения ТНУ, в конце статьи мы рассмотрим два проекта - один из них проект масштабной кольцевой системы, внедренной в Краснодарском крае, второй – объект малого строительства в Подмосковье.

Какие тепловые насосы бывают?

Тепловые насосы бывают разной тепловой мощности - от нескольких киловатт до сотен мегаватт. Они могут работать с различными источниками тепла, находящимися в разных агрегатных состояниях. В связи с этим, их можно разделить на следующие типы: вода–вода, вода–воздух, воздух–вода, воздух–воздух. Выпускаются ТНУ, предназначенные для работы с источниками низкопотенциального тепла самых разных температур, вплоть до отрицательной. Они могут использоваться в качестве приемника высокопотенциального тепла, требующего различной температуры, даже выше 1000С. В зависимости от этого тепловые насосы можно разделить на низкотемпературные, среднетемпературные и высокотемпературные.

Тепловые насосы различаются также по техническому устройству. В этом плане можно выделить два направления: парокомпрессионные и абсорбционные ТНУ. Тепловые насосы для своей работы могут использовать и другие виды энергии, кроме электрической, например, они могут работать на различных видах топлива.

Различные комбинации видов источников низкопотенциального тепла и приемников высокопотенциального тепла дают большое разнообразие типов тепловых насосов. Вот некоторые примеры:

  • ТНУ, использующий тепло грунтовых вод для отопления;
  • ТНУ, использующий тепло естественного водоема для горячего водоснабжения;
  • ТНУ–кондиционер воздуха, использующий морскую воду в качестве источника и приемника тепла;
  • ТНУ–кондиционер воздуха, использующий наружный воздух в качестве источника и приемника тепла;
  • ТНУ для нагрева воды плавательного бассейна, использующий тепло наружного воздуха;
  • ТНУ, утилизирующий тепло сточных вод в системе теплоснабжения;
  • ТНУ, утилизирующий тепло инженерно–технического оборудования в системе теплоснабжения;
  • ТНУ для охлаждения молока и одновременно нагрева воды для горячего водоснабжения на молочных фермах;
  • ТНУ для утилизации тепла от технологических процессов в первичном подогреве приточного воздуха.

Большое разнообразие теплонасосной техники выпускается серийно, но тепловые насосы могут изготавливаться и по специальным проектам. Имеются экспериментальные установки, опытно–промышленные образцы, а также много теоретических разработок.

В случае, если на объекте предусматривается применение нескольких тепловых насосов, которые будут предназначены для производства как тепла, так и холода, эффективность их работы многократно возрастет, если они будут объединены в единую систему. Это так называемые кольцевые теплонасосные системы (КТНС). Такие системы целесообразно использовать на средних и крупных объектах.

Кольцевые системы кондиционирования воздуха

Основу этих систем составляют ТНУ типа вода–воздух, выполняющие функции кондиционирования воздуха в помещениях. В помещении, где предусматривается кондиционирование воздуха (или рядом с ним) устанавливается тепловой насос, мощность которого подбирается в соответствии с параметрами помещения, его назначением, характеристиками необходимой приточно–вытяжной вентиляции, возможным количеством присутствующих людей, установленным в нем оборудованием и другими критериями. Все ТНУ реверсивные, то есть предназначены и для охлаждения, и для нагрева воздуха. Все они связаны общим водяным контуром - трубами, в которых циркулирует вода. Вода является одновременно и источником, и приемником тепла для всех ТНУ. Температура в контуре может изменяться в пределах от 18 до 320С. Между тепловыми насосами, которые нагревают воздух, и теми, которые охлаждают его, происходит обмен теплом посредством водяного контура. В зависимости от особенностей помещений, а также от времени года и времени суток - в разных помещениях может требоваться либо нагрев, либо охлаждение воздуха. При одновременной работе в одном здании ТНУ, производящих тепло и холод, происходит перенос тепла из помещений, где его избыток, в помещения, где его не хватает. Таким образом, происходит обмен теплом между зонами, объединенными в единое кольцо.

Помимо ТНУ, выполняющих функцию кондиционирования воздуха, в состав КТНС могут входить и ТНУ другого назначения. Если на объекте имеются достаточные потребности в тепле, через кольцевую систему при помощи ТНУ можно эффективно утилизировать бросовое тепло. Например, при наличии интенсивного потока сточных вод имеет смысл установить ТНУ вода–вода, который позволит утилизировать тепло сбросов посредством КТНС. Такой тепловой насос сможет извлекать тепло из сточных вод, передавать его с помощью кольцевого контура, а затем использовать для обогрева помещений.

Воздух, удаляемый из здания вытяжной вентиляцией, также содержит большое количество тепла. При отсутствии в вытяжном воздухе большого количества примесей, затрудняющих работу ТНУ, можно утилизировать тепло удаляемого воздуха, установив ТНУ воздух–вода. Через КТНС это тепло может быть использовано всеми потребителями в здании, чего трудно добиться, применяя традиционные регенераторы и рекуператоры. Кроме того, процесс утилизации в данном случае может происходить эффективнее, так как не зависит от температуры наружного воздуха, забираемого приточной вентиляцией, и от устанавливаемой температуры нагрева воздуха, нагнетаемого в помещения.

Кроме того, при работе реверсивных тепловых насосов и на сточных водах и в вытяжной вентиляции, их можно использовать для удаления излишков тепла из водяного контура в теплое время года, и тем самым снижать необходимую мощность градирни.

В теплое время года при помощи тепловых насосов излишки тепла в водяном контуре утилизируются через потребителей, имеющихся на объекте. Например, к кольцевой системе может быть подключен ТНУ вода–вода, передающий избыточное тепло в систему горячего водоснабжения (ГВС). На объекте с небольшими потребностями в горячей воде такого теплового насоса может быть достаточно для того, чтобы полностью их удовлетворить.

Если на объекте имеется один или несколько плавательных бассейнов, например, в оздоровительных учреждениях, в домах отдыха, в развлекательных комплексах и в гостиницах, нагрев воды бассейнов можно также реализовать при помощи ТНУ вода–вода, подключив его к КТНС.

Сочетание кольцевых систем с другими системами

Систему вентиляции в зданиях с использованием кольцевой теплонасосной системы необходимо разрабатывать с учетом особенности работы ТНУ, кондиционирующих воздух. Обязательной является рециркуляция воздуха в том объеме, который необходим для стабильной работы этих ТНУ, поддержания заданной температуры в помещении и эффективной утилизации тепла (исключением являются те случаи, где рециркуляция нежелательна, например, залы плавательных бассейнов, местные кухонные вытяжки). Существуют и некоторые другие особенности при разработке вентиляции с КТНС.

Однако, вместе с тем, кольцевая система предусматривает более простые системы вентиляции, чем при других способах кондиционирования. Тепловые насосы осуществляют кондиционирование воздуха непосредственно на месте, в самом помещении, что избавляет от необходимости транспортировки готового воздуха по протяженным теплоизолированным воздуховодам, как это происходит, допустим, при центральном кондиционировании.

Кольцевая система может полностью взять на себя функции отопления, но не исключается и совместное применение с системой отопления. В этом случае применяется менее мощная и более простая с технической точки зрения система отопления. Такая бивалентная система более пригодна в северных широтах, где необходимо больше тепла для отопления, и его придется подводить в большем количестве от высокопотенциального источника. Если в здании установлены отдельные системы кондиционирования и отопления, то эти системы, зачастую, буквально мешают друг другу, особенно в переходные периоды. Использование же кольцевой системы совместно с системой отопления не порождает подобных проблем, так как ее работа полностью зависит от фактического состояния микроклимата в каждой отдельной зоне.

На предприятиях кольцевые теплонасосные системы могут участвовать в нагреве или охлаждении воды или воздуха в технологических целях, причем эти процессы будут включены в баланс общего теплоснабжения предприятия.

Говоря о традиционных системах теплоснабжения, трудно согласиться с их ограниченной экономичностью. Тепло используется частично, быстро рассеивается в атмосферу (при работе отопления и вентиляции), удаляется со сточными водами (через ГВС, технологические процессы) и другими путями. Хорошо еще, если для обеспечения некоторой экономичности установлены теплообменники типа воздух–воздух в системе вентиляции, или типа вода–вода для утилизации тепла, например, холодильных агрегатов, или какие–то другие местные устройства вторичного использования тепла. КТНС же решает данную задачу комплексно, во многих случаях позволяя сделать утилизацию тепла более эффективной.

Автоматизированное управление кольцевыми системами

К разочарованию многих производителей дорогостоящих систем автоматизации, теплонасосные системы не требуют сложных средств автоматизированного управления. Все регулирование здесь сводится лишь к поддержанию определенного значения температуры воды в контуре. Чтобы не допустить охлаждения воды ниже заданного предела, необходимо вовремя включать дополнительный нагреватель. И наоборот, чтобы не превысить верхний предел, надо своевременно включать градирню. Автоматическое управление этим несложным процессом можно реализовать при помощи нескольких термостатов. Поскольку температура воды в контуре КТНС может изменяться в довольно широком диапазоне (обычно от 18 до 320С), то нет также необходимости в использовании точной регулирующей арматуры.

Что касается процесса поступления тепла от теплового насоса к потребителю, то он контролируется за счет автоматики, встроенной в каждый тепловой насос. Например, ТНУ для кондиционирования воздуха имеют датчик температуры (термостат), устанавливаемый непосредственно в помещении. Этого обычного термостата вполне достаточно для управления работой ТН.

Тепловой насос полностью обеспечивает необходимые температурные параметры воздуха в помещениях, что позволяет отказаться от регулирующих заслонок в системе вентиляции и регулирующей арматуры в системе отопления (при бивалентной системе). Все эти обстоятельства способствуют снижению стоимости и повышению надежности инженерных систем в целом.

На крупных объектах, где кольцевая система включает в себя большое количество тепловых насосов и где установлены разнотипные ТНУ (для кондиционирования, утилизации тепла и для обеспечения технологических процессов), часто имеет смысл реализовывать более сложную систему автоматизированного управления, которая позволяет оптимизировать работу всей системы.

На работу кольцевой теплонасосной системы влияют следующие факторы:

  • во-первых, температура воды в контуре. От нее зависит коэффициент преобразования теплоты (СОР), то есть, отношение количества выдаваемого потребителю тепла к количеству потребляемой тепловым насосом энергии;
  • во-вторых, температура наружного воздуха;
  • в­третьих, параметры работы градирни. Для одного и того же количества удаленного тепла при разных условиях может быть затрачено разное количество энергии, потребляемой градирней. Это, в свою очередь, также зависит от температуры наружного воздуха, его влажности, наличия ветра и прочих условий;
  • в­четвертых, от количества работающих в данный момент в системе тепловых насосов. Здесь значение имеет суммарная мощность ТНУ, забирающих тепло из водяного контура, по сравнению с мощностью всех ТНУ, отдающих тепло в контур, то есть количество тепла, поступающего в контур или удаляемого из него.

Хорошо детям, хорошо бюджету

Перейдем к описанию проектов с использованием кольцевых теплонасосных систем.

Первый проект - это реконструкция обычной общеобразовательной школы на юге России. Летом прошлого года администрация Краснодарского края реализовала этот проект в г. Усть–Лабинск (городская школа №2). При реконструкции были выдержаны самые высокие стандарты в обеспечении санитарных требований и комфортного пребывания детей в школе. В частности, в здании была установлена полноценная климатическая система, обеспечивающая позонный контроль за температурой, притоком свежего воздуха и влажностью.

Инженерам при реализации данного проекта, во–первых, хотелось обеспечить должный уровень комфорта, индивидуальный контроль в каждом классе. Во–вторых, предполагалось, что кольцевая система позволит значительно снизить затраты на отопление школы и решить проблему низкой температуры воды в теплоцентрали на участке школы. Система состоит из более чем пятидесяти тепловых насосов производства фирмы Climatemaster (США) и градирни. Она получает дополнительное тепло от теплоцентрали города. Климатическая система находится под автоматизированным управлением и способна самостоятельно поддерживать наиболее комфортные для человека и одновременно экономичные режимы работы.

Эксплуатация описанной системы в зимние месяцы дала следующие результаты:

  • до модернизации (до установки тепловых насосов), ежемесячные затраты на обогрев 2500 м2 составляли 18440 руб.;
  • после модернизации здания отапливаемая площадь увеличилась до 3000 м2, а ежемесячные затраты на отопление снизились до 9800 руб.

Таким образом, использование тепловых насосов позволило более чем вдвое сократить затраты на отопление здания, отапливаемая площадь которого увеличилась почти на 20%.

Автономное тепло

Проблемы коттеджного строительства в Подмосковье сегодня связаны с тем, что инфраструктура (электрические сети, водопроводы), часто не позволяет расти новым поселкам. Существующие трансформаторные подстанции не справляются с возросшими нагрузками. Постоянные перебои с подачей электроэнергии (аварии на старых подстанциях, обрывы ветхих проводов) заставляют потребителей искать пути автономного энергоснабжения.

В описываемом проекте перед инженерами стояла задача обеспечить многокомнатный двухэтажный коттедж с мансардой теплом и электричеством. Общая отапливаемая площадь дома составила 200 м2. Из подведенных коммуникаций - артезианская вода и электричество.

Поскольку во главу угла было положено требование энергоэффективности, было решено установить солнечные батареи. Были закуплены и смонтированы прямо на участке за домом солнечные фотоэлектрические модули на 3,5 кВт. По расчетам инженеров, этого должно было хватить на подпитку аккумуляторных батарей, которые бы, в свою очередь, бесперебойно питали дом и систему отопления. Общая стоимость системы составила порядка 27?000 долларов США. Если учесть, что получен источник бесплатного электричества, и эта статья будет вычеркнута из семейного бюджета, то получается, что затраты на установку солнечной батареи окупятся менее, чем за 10 лет. А если учесть, что в другом случае пришлось бы строить подстанцию или жить с постоянными перебоями электроснабжения, то затраты уже можно считать окупившимися.

Для отопления было решено использовать геотермальную теплонасосную систему. Был закуплен американский тепловой насос типа "вода–вода". Данный тип тепловых насосов с помощью теплообменников производит горячую воду, которая может быть использована для горячего водоснабжения и отопления с помощью радиаторных батарей. Сам контур, поставляющий к тепловому насосу низкопотенциальное тепло, был проложен прямо на участке, прилегающем к коттеджу, на глубине 2 м. Контур представляет собой полиэтиленовую трубу, диаметром 32 мм и протяженностью 800 м. Установка теплового насоса с монтажом, поставкой оборудования и комплектующих обошлась в 10?000 долларов США.

Таким образом, затратив на организацию собственной автономной энергосистемы порядка 40?000 долларов США, хозяин коттеджа исключил затраты на теплоснабжение из своего бюджета, и обеспечил надежное автономное отопление.

Возможности применения кольцевых систем

Из вышеизложенного следует, что возможности применения кольцевой теплонасосной системы необычайно широки. Их можно использовать на самых разных объектах. Это административные, общественные здания, медицинские и оздоровительные учреждения, дома отдыха, развлекательные и спортивные комплексы, различные промышленные предприятия. Системы настолько гибкие, что их применение возможно в самых разных случаях и в очень большом количестве вариантов.

При разработке такой системы, прежде всего, нужно оценить потребности в тепле и холоде проектируемого объекта, изучить все возможные источники тепла внутри здания и все предполагаемые приемники тепла, определить теплопритоки и теплопотери. Наиболее пригодные из источников тепла могут быть использованы в кольцевой системе в том случае, если это тепло будет востребовано. Общая мощность утилизирующих тепловых насосов не должна быть бесполезно избыточной. При определенных условиях самым выгодным вариантом, возможно, будет установка ТНУ, использующих внешнюю среду в качестве источника и приемника тепла. Система должна быть сбалансирована по теплу, но это вовсе не означает, что общие мощности источников и потребителей тепла должны быть равны, они могут разниться, так как их соотношение может значительно изменяться при изменении условий работы системы.

Как противостоять опасности возгорания воздуховодов

За последнее время резко увеличилось количество пожаров и даже взрывов внутри воздуховодов систем вентиляции и кондиционирования. Несмотря на то, что подобные пожары происходили всегда, изменения, произошедшие в последние время, стали причиной возникновения куда более крупных возгораний с участием большего числа людей.

Анализ перспективных систем теплоснабжения

В этом докладе рассмотрены вопросы, связанные с переходом систем централизованного теплоснабжения на децентрализованное. Рассмотрены положительные и отрицательные стороны обеих систем. Представлены результаты проведенного сопоставления этих систем.

За последний год тепловые насосы заняли свою нишу на российском климатическом рынке в числе других популярных технологий. Обсуждение достоинств и недостатков теплонасосных установок (ТНУ) проходило как на страницах отраслевой прессы, так и на тематических конференциях и круглых столах. О тепловых насосах в последнее время появилось много информации - как в русскоязычном Интернет, так и в специализированных СМИ. Тем не менее, по-прежнему крайне мало публикаций об интегрированных теплонасосных системах. Цель данной статьи - несколько восполнить этот пробел, обобщить некоторые из вопросов, возникающих у специалистов при первом знакомстве с кольцевыми теплонаносными системами, и коротко ответить на них.

Итак, про тепловые насосы известно, что это климатическое оборудование, способное утилизировать тепло окружающей среды, с помощью компрессора поднимать температуру теплоносителя до нужного уровня и передавать это тепло туда, где оно необходимо.

Извлечь из окружающей среды тепло можно почти всегда. Ведь "холодная вода" - понятие субъективное, основанное на наших ощущениях. Даже самая холодная речная вода содержит некоторое количество теплоты. Но известно, что тепло переходит только от более нагретого тела к более холодному. Тепло можно принудительно направить от холодного тела к теплому, тогда холодное тело еще больше остынет, а теплое нагреется. Используя тепловой насос, который "выкачивает" тепло из воздуха, речной воды или земли, еще более понижая их температуру, можно обогреть здание. В классическом случае считается, что, затрачивая на работу 1 кВт электроэнергии, ТНУ может произвести от 3 до 6 кВт тепловой энергии. На практике это означает, что мощностью двух-трех бытовых лампочек в зимний период можно обогреть жилую комнату средних размеров. Летом, работая в обратном режиме, тепловой насос может охлаждать воздух в помещениях здания. Тепло из здания будет удаляться, поглощаясь атмосферой, рекой или землей.

В настоящее время имеется огромное разнообразие теплонасосных установок, что позволяет широко применять их в промышленности, сельском хозяйстве, в ЖКХ. В качестве примера применения ТНУ, в конце статьи мы рассмотрим два проекта - один из них проект масштабной кольцевой системы, внедренной в Краснодарском крае, второй — объект малого строительства в Подмосковье.

Какие тепловые насосы бывают?

Тепловые насосы бывают разной тепловой мощности - от нескольких киловатт до сотен мегаватт. Они могут работать с различными источниками тепла, находящимися в разных агрегатных состояниях. В связи с этим, их можно разделить на следующие типы: вода-вода, вода-воздух, воздух-вода, воздух-воздух. Выпускаются ТНУ, предназначенные для работы с источниками низкопотенциального тепла самых разных температур, вплоть до отрицательной. Они могут использоваться в качестве приемника высокопотенциального тепла, требующего различной температуры, даже выше 1000С. В зависимости от этого тепловые насосы можно разделить на низкотемпературные, среднетемпературные и высокотемпературные.

Тепловые насосы различаются также по техническому устройству. В этом плане можно выделить два направления: парокомпрессионные и абсорбционные ТНУ. Тепловые насосы для своей работы могут использовать и другие виды энергии, кроме электрической, например, они могут работать на различных видах топлива.

Различные комбинации видов источников низкопотенциального тепла и приемников высокопотенциального тепла дают большое разнообразие типов тепловых насосов. Вот некоторые примеры:

  • ТНУ, использующий тепло грунтовых вод для отопления;
  • ТНУ, использующий тепло естественного водоема для горячего водоснабжения;
  • ТНУ-кондиционер воздуха, использующий морскую воду в качестве источника и приемника тепла;
  • ТНУ-кондиционер воздуха, использующий наружный воздух в качестве источника и приемника тепла;
  • ТНУ для нагрева воды плавательного бассейна, использующий тепло наружного воздуха;
  • ТНУ, утилизирующий тепло сточных вод в системе теплоснабжения;
  • ТНУ, утилизирующий тепло инженерно-технического оборудования в системе теплоснабжения;
  • ТНУ для охлаждения молока и одновременно нагрева воды для горячего водоснабжения на молочных фермах;
  • ТНУ для утилизации тепла от технологических процессов в первичном подогреве приточного воздуха.

Большое разнообразие теплонасосной техники выпускается серийно, но тепловые насосы могут изготавливаться и по специальным проектам. Имеются экспериментальные установки, опытно-промышленные образцы, а также много теоретических разработок.

В случае, если на объекте предусматривается применение нескольких тепловых насосов, которые будут предназначены для производства как тепла, так и холода, эффективность их работы многократно возрастет, если они будут объединены в единую систему. Это так называемые кольцевые теплонасосные системы (КТНС). Такие системы целесообразно использовать на средних и крупных объектах.

Кольцевые системы кондиционирования воздуха

Основу этих систем составляют ТНУ типа вода-воздух, выполняющие функции кондиционирования воздуха в помещениях. В помещении, где предусматривается кондиционирование воздуха (или рядом с ним) устанавливается тепловой насос, мощность которого подбирается в соответствии с параметрами помещения, его назначением, характеристиками необходимой приточно-вытяжной вентиляции, возможным количеством присутствующих людей, установленным в нем оборудованием и другими критериями. Все ТНУ реверсивные, то есть предназначены и для охлаждения, и для нагрева воздуха. Все они связаны общим водяным контуром - трубами, в которых циркулирует вода. Вода является одновременно и источником, и приемником тепла для всех ТНУ. Температура в контуре может изменяться в пределах от 18 до 320С. Между тепловыми насосами, которые нагревают воздух, и теми, которые охлаждают его, происходит обмен теплом посредством водяного контура. В зависимости от особенностей помещений, а также от времени года и времени суток - в разных помещениях может требоваться либо нагрев, либо охлаждение воздуха. При одновременной работе в одном здании ТНУ, производящих тепло и холод, происходит перенос тепла из помещений, где его избыток, в помещения, где его не хватает. Таким образом, происходит обмен теплом между зонами, объединенными в единое кольцо.

Помимо ТНУ, выполняющих функцию кондиционирования воздуха, в состав КТНС могут входить и ТНУ другого назначения. Если на объекте имеются достаточные потребности в тепле, через кольцевую систему при помощи ТНУ можно эффективно утилизировать бросовое тепло. Например, при наличии интенсивного потока сточных вод имеет смысл установить ТНУ вода-вода, который позволит утилизировать тепло сбросов посредством КТНС. Такой тепловой насос сможет извлекать тепло из сточных вод, передавать его с помощью кольцевого контура, а затем использовать для обогрева помещений.

Воздух, удаляемый из здания вытяжной вентиляцией, также содержит большое количество тепла. При отсутствии в вытяжном воздухе большого количества примесей, затрудняющих работу ТНУ, можно утилизировать тепло удаляемого воздуха, установив ТНУ воздух-вода. Через КТНС это тепло может быть использовано всеми потребителями в здании, чего трудно добиться, применяя традиционные регенераторы и рекуператоры. Кроме того, процесс утилизации в данном случае может происходить эффективнее, так как не зависит от температуры наружного воздуха, забираемого приточной вентиляцией, и от устанавливаемой температуры нагрева воздуха, нагнетаемого в помещения.

Кроме того, при работе реверсивных тепловых насосов и на сточных водах и в вытяжной вентиляции, их можно использовать для удаления излишков тепла из водяного контура в теплое время года, и тем самым снижать необходимую мощность градирни.

В теплое время года при помощи тепловых насосов излишки тепла в водяном контуре утилизируются через потребителей, имеющихся на объекте. Например, к кольцевой системе может быть подключен ТНУ вода-вода, передающий избыточное тепло в систему горячего водоснабжения (ГВС). На объекте с небольшими потребностями в горячей воде такого теплового насоса может быть достаточно для того, чтобы полностью их удовлетворить.

Если на объекте имеется один или несколько плавательных бассейнов, например, в оздоровительных учреждениях, в домах отдыха, в развлекательных комплексах и в гостиницах, нагрев воды бассейнов можно также реализовать при помощи ТНУ вода-вода, подключив его к КТНС.

Сочетание кольцевых систем с другими системами

Систему вентиляции в зданиях с использованием кольцевой теплонасосной системы необходимо разрабатывать с учетом особенности работы ТНУ, кондиционирующих воздух. Обязательной является рециркуляция воздуха в том объеме, который необходим для стабильной работы этих ТНУ, поддержания заданной температуры в помещении и эффективной утилизации тепла (исключением являются те случаи, где рециркуляция нежелательна, например, залы плавательных бассейнов, местные кухонные вытяжки). Существуют и некоторые другие особенности при разработке вентиляции с КТНС.

Однако, вместе с тем, кольцевая система предусматривает более простые системы вентиляции, чем при других способах кондиционирования. Тепловые насосы осуществляют кондиционирование воздуха непосредственно на месте, в самом помещении, что избавляет от необходимости транспортировки готового воздуха по протяженным теплоизолированным воздуховодам, как это происходит, допустим, при центральном кондиционировании.

Кольцевая система может полностью взять на себя функции отопления, но не исключается и совместное применение с системой отопления. В этом случае применяется менее мощная и более простая с технической точки зрения система отопления. Такая бивалентная система более пригодна в северных широтах, где необходимо больше тепла для отопления, и его придется подводить в большем количестве от высокопотенциального источника. Если в здании установлены отдельные системы кондиционирования и отопления, то эти системы, зачастую, буквально мешают друг другу, особенно в переходные периоды. Использование же кольцевой системы совместно с системой отопления не порождает подобных проблем, так как ее работа полностью зависит от фактического состояния микроклимата в каждой отдельной зоне.

На предприятиях кольцевые теплонасосные системы могут участвовать в нагреве или охлаждении воды или воздуха в технологических целях, причем эти процессы будут включены в баланс общего теплоснабжения предприятия.

Говоря о традиционных системах теплоснабжения, трудно согласиться с их ограниченной экономичностью. Тепло используется частично, быстро рассеивается в атмосферу (при работе отопления и вентиляции), удаляется со сточными водами (через ГВС, технологические процессы) и другими путями. Хорошо еще, если для обеспечения некоторой экономичности установлены теплообменники типа воздух-воздух в системе вентиляции, или типа вода-вода для утилизации тепла, например, холодильных агрегатов, или какие-то другие местные устройства вторичного использования тепла. КТНС же решает данную задачу комплексно, во многих случаях позволяя сделать утилизацию тепла более эффективной.

Автоматизированное управление кольцевыми системами

К разочарованию многих производителей дорогостоящих систем автоматизации, теплонасосные системы не требуют сложных средств автоматизированного управления. Все регулирование здесь сводится лишь к поддержанию определенного значения температуры воды в контуре. Чтобы не допустить охлаждения воды ниже заданного предела, необходимо вовремя включать дополнительный нагреватель. И наоборот, чтобы не превысить верхний предел, надо своевременно включать градирню. Автоматическое управление этим несложным процессом можно реализовать при помощи нескольких термостатов. Поскольку температура воды в контуре КТНС может изменяться в довольно широком диапазоне (обычно от 18 до 320С), то нет также необходимости в использовании точной регулирующей арматуры.

Что касается процесса поступления тепла от теплового насоса к потребителю, то он контролируется за счет автоматики, встроенной в каждый тепловой насос. Например, ТНУ для кондиционирования воздуха имеют датчик температуры (термостат), устанавливаемый непосредственно в помещении. Этого обычного термостата вполне достаточно для управления работой ТН.

Тепловой насос полностью обеспечивает необходимые температурные параметры воздуха в помещениях, что позволяет отказаться от регулирующих заслонок в системе вентиляции и регулирующей арматуры в системе отопления (при бивалентной системе). Все эти обстоятельства способствуют снижению стоимости и повышению надежности инженерных систем в целом.

На крупных объектах, где кольцевая система включает в себя большое количество тепловых насосов и где установлены разнотипные ТНУ (для кондиционирования, утилизации тепла и для обеспечения технологических процессов), часто имеет смысл реализовывать более сложную систему автоматизированного управления, которая позволяет оптимизировать работу всей системы.

На работу кольцевой теплонасосной системы влияют следующие факторы:

  • во-первых, температура воды в контуре. От нее зависит коэффициент преобразования теплоты (СОР), то есть, отношение количества выдаваемого потребителю тепла к количеству потребляемой тепловым насосом энергии;
  • во-вторых, температура наружного воздуха;
  • в-третьих, параметры работы градирни. Для одного и того же количества удаленного тепла при разных условиях может быть затрачено разное количество энергии, потребляемой градирней. Это, в свою очередь, также зависит от температуры наружного воздуха, его влажности, наличия ветра и прочих условий;
  • в-четвертых, от количества работающих в данный момент в системе тепловых насосов. Здесь значение имеет суммарная мощность ТНУ, забирающих тепло из водяного контура, по сравнению с мощностью всех ТНУ, отдающих тепло в контур, то есть количество тепла, поступающего в контур или удаляемого из него.

Хорошо детям, хорошо бюджету

Перейдем к описанию проектов с использованием кольцевых теплонасосных систем.

Первый проект - это реконструкция обычной общеобразовательной школы на юге России. Летом прошлого года администрация Краснодарского края реализовала этот проект в г. Усть-Лабинск (городская школа №2). При реконструкции были выдержаны самые высокие стандарты в обеспечении санитарных требований и комфортного пребывания детей в школе. В частности, в здании была установлена полноценная климатическая система, обеспечивающая позонный контроль за температурой, притоком свежего воздуха и влажностью.

Инженерам при реализации данного проекта, во-первых, хотелось обеспечить должный уровень комфорта, индивидуальный контроль в каждом классе. Во-вторых, предполагалось, что кольцевая система позволит значительно снизить затраты на отопление школы и решить проблему низкой температуры воды в теплоцентрали на участке школы. Система состоит из более чем пятидесяти тепловых насосов производства фирмы Climatemaster (США) и градирни. Она получает дополнительное тепло от теплоцентрали города. Климатическая система находится под автоматизированным управлением и способна самостоятельно поддерживать наиболее комфортные для человека и одновременно экономичные режимы работы.

Эксплуатация описанной системы в зимние месяцы дала следующие результаты:

  • до модернизации (до установки тепловых насосов), ежемесячные затраты на обогрев 2500 м2 составляли 18440 руб.;
  • после модернизации здания отапливаемая площадь увеличилась до 3000 м2, а ежемесячные затраты на отопление снизились до 9800 руб.

Таким образом, использование тепловых насосов позволило более чем вдвое сократить затраты на отопление здания, отапливаемая площадь которого увеличилась почти на 20%.

Автономное тепло

Проблемы коттеджного строительства в Подмосковье сегодня связаны с тем, что инфраструктура (электрические сети, водопроводы), часто не позволяет расти новым поселкам. Существующие трансформаторные подстанции не справляются с возросшими нагрузками. Постоянные перебои с подачей электроэнергии (аварии на старых подстанциях, обрывы ветхих проводов) заставляют потребителей искать пути автономного энергоснабжения.

В описываемом проекте перед инженерами стояла задача обеспечить многокомнатный двухэтажный коттедж с мансардой теплом и электричеством. Общая отапливаемая площадь дома составила 200 м2. Из подведенных коммуникаций - артезианская вода и электричество.

Поскольку во главу угла было положено требование энергоэффективности, было решено установить солнечные батареи. Были закуплены и смонтированы прямо на участке за домом солнечные фотоэлектрические модули на 3,5 кВт. По расчетам инженеров, этого должно было хватить на подпитку аккумуляторных батарей, которые бы, в свою очередь, бесперебойно питали дом и систему отопления. Общая стоимость системы составила порядка 27?000 долларов США. Если учесть, что получен источник бесплатного электричества, и эта статья будет вычеркнута из семейного бюджета, то получается, что затраты на установку солнечной батареи окупятся менее, чем за 10 лет. А если учесть, что в другом случае пришлось бы строить подстанцию или жить с постоянными перебоями электроснабжения, то затраты уже можно считать окупившимися.

Для отопления было решено использовать геотермальную теплонасосную систему. Был закуплен американский тепловой насос типа "вода-вода". Данный тип тепловых насосов с помощью теплообменников производит горячую воду, которая может быть использована для горячего водоснабжения и отопления с помощью радиаторных батарей. Сам контур, поставляющий к тепловому насосу низкопотенциальное тепло, был проложен прямо на участке, прилегающем к коттеджу, на глубине 2 м. Контур представляет собой полиэтиленовую трубу, диаметром 32 мм и протяженностью 800 м. Установка теплового насоса с монтажом, поставкой оборудования и комплектующих обошлась в 10?000 долларов США.

Таким образом, затратив на организацию собственной автономной энергосистемы порядка 40?000 долларов США, хозяин коттеджа исключил затраты на теплоснабжение из своего бюджета, и обеспечил надежное автономное отопление.

Возможности применения кольцевых систем

Из вышеизложенного следует, что возможности применения кольцевой теплонасосной системы необычайно широки. Их можно использовать на самых разных объектах. Это административные, общественные здания, медицинские и оздоровительные учреждения, дома отдыха, развлекательные и спортивные комплексы, различные промышленные предприятия. Системы настолько гибкие, что их применение возможно в самых разных случаях и в очень большом количестве вариантов.

При разработке такой системы, прежде всего, нужно оценить потребности в тепле и холоде проектируемого объекта, изучить все возможные источники тепла внутри здания и все предполагаемые приемники тепла, определить теплопритоки и теплопотери. Наиболее пригодные из источников тепла могут быть использованы в кольцевой системе в том случае, если это тепло будет востребовано. Общая мощность утилизирующих тепловых насосов не должна быть бесполезно избыточной. При определенных условиях самым выгодным вариантом, возможно, будет установка ТНУ, использующих внешнюю среду в качестве источника и приемника тепла. Система должна быть сбалансирована по теплу, но это вовсе не означает, что общие мощности источников и потребителей тепла должны быть равны, они могут разниться, так как их соотношение может значительно изменяться при изменении условий работы системы.

Таким образом, кольцевая теплонасосная система выполняет функции и отопления, и кондиционирования воздуха, и эффективной утилизации тепла. Использование одной системы вместо нескольких всегда более выгодно с точки зрения капитальных и эксплутационных затрат.

Статья предоставлена компанией "АЭРОКЛИМАТ"

Становятся все менее выгодными и утрачивают свою актуальность. Сжигание газового или жидкого топлива в котлах, как никогда прежде, отягощает бюджет. Существенной экономии можно достичь, если использовать тепловые насосы для отопления дома. В них заложен принцип потребления бесплатной природной энергии, которая повсюду. Ее нужно только взять.

Эффективность вложений

Сжиженный газ и дизельное топливо не могут соперничать с тепловыми насосами ни по текущим затратам, ни по комфорту эксплуатации. Использование для отопления твердого топлива трудно поддается автоматизации и требует больших трудозатрат. Электроэнергия комфортный, но дорогой вид энергии. Для подключения электрического котла нужна отдельная мощная линия. До сих пор в отечественных условиях природный газ оставался наиболее востребованным и удобным видом топлива. Но он имеет ряд недостатков:

  1. Оформление разрешений.
  2. Согласование проекта в контролирующих органах и с соседями.
  3. Часть операций по врезке и подключению могут выполнять только уполномоченные организации.
  4. Периодическая поверка счетчика.
  5. Ограниченное распространение сети и удаленность точек подключения.
  6. Высокие затраты на прокладку питающей линии.
  7. Газоиспользующее оборудование является источником потенциальной угрозы и требует регламентированного контроля.

Существенным недостатком теплового насоса можно считать только высокие капитальные вложения на этапе закупки оборудования и монтажа. Цена стандартной отопительной системы на тепловом насосе с геотермальным теплообменником складывается из стоимости работы бурильщиков и специфического оборудования с монтажом. В комплект входят:

Работы выполняются квалифицированным персоналом с профессиональным инструментом. Несколько более высокие первоначальные затраты уравновешивается серьезными достоинствами:

  1. Теплонасосная установка очень экономична, что позволяет окупить дополнительные затраты всего за несколько сезонов.
  2. Есть широкие возможности для реализации гибкого автоматизированного управления с минимумом обслуживания.
  3. Комфорт использования.
  4. Хорошая приспособленность для установки в жилых помещениях, благодаря эстетичному и современному дизайну.
  5. Охлаждение помещений на базе того же комплекта оборудования.
  6. При работе на охлаждение помимо активного режима работы есть возможность использования пониженной температуры природной воды и грунта для реализации пассивного режима без лишних затрат энергии.
  7. Невысокая мощность оборудования не требует прокладки питающего кабеля большого сечения.
  8. Отсутствие необходимости в разрешительной документации.
  9. Возможность использования существующей разводки отопительных приборов.

На производство 1 кВт тепловой мощности достаточно затратить не более 250 Вт. Для отопления частного домовладения на 1 м.кв. площади потребляется всего около 25 Вт/час. И это с учетом горячего водоснабжения. Еще больше повысить энергоэффективность можно путем улучшения теплоизоляции дома.

Как это работает

Тепловой насос, принцип работы которого основан на цикле Карно, расходует энергию не на нагрев теплоносителя, а на перекачивание внешнего тепла. Технология не нова. Тепловые насосы трудятся в наших домах в составе холодильников уже десятки лет. В холодильнике тепло из камеры перемещается наружу. В новейших отопительных установках реализуется обратный процесс. Несмотря на низкую температуру за бортом, энергии там предостаточно.

Забирать тепло у более холодного тела и отдавать его более горячему становиться возможным, благодаря свойству вещества потреблять энергию при испарении и выделять ее при конденсации, а также повышать свою температуру в результате сжатия. Необходимые условия для кипения и испарения создаются путем изменения давления. В качестве рабочего тела используют жидкость с низкой температурой кипения – фреон.

В тепловом насосе преобразования происходят в 4 этапа:

  1. Охлажденное ниже температуры внешней среды жидкое рабочее тело циркулирует по контактирующему с ней змеевику. Жидкость нагревается и испаряется.
  2. Газ сжимается компрессором, в результате чего его температура превышается.
  3. В более холодном внутреннем змеевике происходит конденсация с выделением тепла.
  4. Жидкость перепускается через дросселирующее устройство для поддержания разности давлений между конденсатором и испарителем.

Практическая реализация

Непосредственный контакт испарителя и конденсатора с внешней и внутренней средой не характерен для систем отопления на базе тепловых насосов. Передача энергии происходит в теплообменниках. Прокачиваемый по внешнему контуру теплоноситель отдает тепло холодному испарителю. Горячий конденсатор передает его в систему отопления дома.

Эффективность такой схемы сильно зависит от разности температур внешней и внутренней сред. Чем она меньше, тем лучше. Поэтому тепло редко отбирают у наружного воздуха, температура которого может быть очень низкой.

По месту забора энергии различают установки следующих типов:

  • «грунт-вода»;
  • «вода-вода»;
  • «воздух-вода».

В качестве теплоносителя в грунтовых и водяных системах используют безопасные незамерзающие жидкости. Это может быть пропиленгликоль. Использование этиленгликоля для таких целей не допускается, так как при разгерметизации системы он вызовет отравление почв или водоносных горизонтов.

Установки «грунт-вода»

Уже на небольшой глубине температура грунта мало зависит от погодных условий, поэтому грунт является эффективной внешней средой. Ниже 5 метров, условия не меняются в любое время года. Различают 2 типа установок:

  • поверхностный;
  • геотермальный.

В первых на участке роются протяженные траншеи на глубину ниже уровня промерзания. В них кольцами раскладываются пластиковые трубы сплошного сечения и засыпаются землей.

В геотермальных системах теплообмен происходит на глубине, в скважинах. Высокие и постоянные температуры в глубинах земли дают хороший экономический эффект. На участке бурятся скважины глубиной от 50 до 100 м в необходимом по расчету количестве. Для одних строений может быть достаточно 1 скважины, для других и 5 будет мало. В скважину опускаются теплообменные зонды.

Установки «вода-вода»

В таких системах используется энергия незамерзающей зимой воды на дне рек и озер или грунтовых вод. Различают 2 типа водяных установок в зависимости от места реализации теплообмена:

  • в водоеме;
  • на испарителе.

Первый вариант является наименее затратным в плане капитальных вложений. Трубопровод просто погружается на дно близлежащего водоема и фиксируется от всплытия. Второй применяют при отсутствии в непосредственной близости водоемов. Бурят 2 скважины: расходную и приемную. Из первой вода перекачивается во вторую через теплообменник.

Установки «воздух-вода»

Воздушный теплообменник устанавливается просто рядом с домом или на крыше. Через него прокачивается наружный воздух. Такие системы менее эффективны, но дешевы. Улучшить характеристики помогает установка в подветренных местах.

Самостоятельная сборка системы

При большом желании можно попробовать установить тепловой насос своими руками. Приобретается мощный фреоновый компрессор, бухта медных труб, теплообменники и другие расходные материалы. Но тонкостей в этой работе много. Состоят они не столько в выполнении монтажных работ, сколько в правильном расчете, настройке и балансировке системы.

Достаточно неудачно подобрать фреоновую магистраль, чтобы попавшая в компрессор жидкость мгновенно вывела его из строя. Сложности также могут возникнуть с реализацией автоматического регулирования производительности системы.

Что еще почитать