Плотность потока электромагнитного излучения — Гипермаркет знаний. Плотность потока излучения

>> Плотность потока электромагнитного излучения

§ 50 ПЛОТНОСТЬ ПОТОКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Таким образом, для выполняется:

Вт .

где - энергия излучения , переносимая через поверхность за время .

Среди световых величин аналогом понятия «Поток излучения» является термин «световой поток ». Различие между этими величинами такое же, как и различие между энергетическими и световыми величинами вообще.

Спектральная плотность потока излучения

Если излучение немонохроматично, то во многих случаях оказывается полезным использовать такую величину, как спектральная плотность потока излучения. Спектральная плотность потока излучения представляет собой поток излучения, приходящийся на малый единичный интервал спектра . Точки спектра при этом могут задаваться их длинами волн, частотами, энергиями квантов излучения, волновыми числами или любым другим способом. Если переменной, определяющей положение точек спектра, является некоторая величина , то соответствующая ей спектральная плотность потока излучения обозначается как и определяется как отношение величины приходящейся на малый спектральный интервал, заключённый между и к ширине этого интервала:

Соответственно, в случае использования длин волн для спектральной плотности потока излучения будет выполняться:

а при использовании частоты -

Следует иметь в виду, что значения спектральной плотности потока излучения в одной и той же точке спектра, получаемые при использовании различных спектральных координат, друг с другом не совпадают. То есть, например, Нетрудно показать, что с учетом

и

правильное соотношение приобретает вид:

См. также

Примечания


Wikimedia Foundation . 2010 .

  • Поток выполнения
  • Поток магнитный

Смотреть что такое "Поток излучения" в других словарях:

    ПОТОК ИЗЛУЧЕНИЯ - (лучистый поток), средняя мощность излучения за время, значительно большее периода колебаний; характеризуется кол вом энергии, переносимой эл. магн. волнами в единицу времени через к. л. поверхность. Величину П. и. измеряют по его действию на… … Физическая энциклопедия

    поток излучения - (Фe[P]) Мощность излучения, определяемая отношением энергии, переносимой излучением, ко времени переноса, значительно превышающему период электромагнитных колебаний. [ГОСТ 7601 78] поток излучения (Фe, P) [ГОСТ 7601 78] [ГОСТ 26148 84] поток… … Справочник технического переводчика

    ПОТОК ИЗЛУЧЕНИЯ - (лучистый поток мощность излучения), полная энергия, переносимая светом в единицу времени через данную поверхность. Понятие поток излучения (применимо к промежуткам времени, значительно превышающим периоды световых колебаний … Большой Энциклопедический словарь

    ПОТОК ИЗЛУЧЕНИЯ - число частиц или квантов, проникающих внутрь элементарной сферы в единицу времени. Обычно П. и. относят к 1 секунде и соответственно определяют его единицу: секунда в минус первой степени. Если рассматривают не количество частиц или квантов, а… … Российская энциклопедия по охране труда

    поток излучения - (лучистый поток, мощность излучения), полная энергия, переносимая светом в единицу времени через данную поверхность. Понятие поток излучения применимо к промежуткам времени, значительно превышающим периоды световых колебаний. * * * ПОТОК… … Энциклопедический словарь

    поток излучения - , лучистый поток, мощность излучения полная энергия, переносимая оптическим излучением (всех его частот) в единицу времени через данную поверхность. Для поглощающей поверхности поток излучения сумма поглощенной и отраженной энергии … Энциклопедический словарь по металлургии

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Energijos kiekis, kurį elektromagnetinė banga perneša per vienetinį laiko tarpą per tam tikrą paviršių. atitikmenys: angl. flux of radiation; radiant flux; radiant… …

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Išskiriamos, perduodamos arba gaunamos spinduliuotės galia. Matavimo vienetas – vatas (W). atitikmenys: angl. flux of radiation; radiant flux; radiant power;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Išspinduliuotų, perduodamų arba priimamų elektromagnetinių bangų galia. atitikmenys: angl. flux of radiation; radiant flux; radiant power; radiation flux vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    поток излучения - spinduliuotės srautas statusas T sritis fizika atitikmenys: angl. flux of radiation; radiant flux; radiation flux vok. Strahlungsfluß, m rus. лучистый поток, m; поток излучения, m pranc. flux de radiation, m; flux de rayonnement, m … Fizikos terminų žodynas

Книги

  • Поток энергии Солнца и его изменения , . В книге рассмотрены и обобщены современные данные о потоке излучения Солнца в различных областях спектра по измерениям с Земли и с космических аппаратов. Большое внимание уделено погрешностям… Купить за 1300 руб
  • Энергетический спектр частиц с энергией более 10 эВ и поток электромагнитных вспышек в приземном слое , В. Ф. Сокуров. В монографии прямым методом измерен энергетический спектр частиц с энергиями 10, 5-1017 эВ по потоку черенковских вспышек с плотностью излучения 17-1480 фотон см 2 эВ Получен излом в спектре…
СГС Примечания Поток излучения \Phi_e - физическая величина , одна из энергетических фотометрических величин . Характеризует мощность , переносимую оптическим излучением через какую-либо поверхность. Равен отношению энергии, переносимой излучением через поверхность, ко времени переноса. Подразумевается, что длительность переноса выбирается так, чтобы она значительно превышала период электромагнитных колебаний . В качестве обозначения используется \Phi_e или P .

Таким образом, для \Phi_e выполняется:

\Phi_e=\frac{dQ_e}{dt}, Вт .

где dQ_e - энергия излучения , переносимая через поверхность за время dt.

Среди световых величин аналогом понятия «Поток излучения» является термин «световой поток ». Различие между этими величинами такое же, как и различие между энергетическими и световыми величинами вообще.

Спектральная плотность потока излучения

Если излучение немонохроматично, то во многих случаях оказывается полезным использовать такую величину, как спектральная плотность потока излучения. Спектральная плотность потока излучения представляет собой поток излучения, приходящийся на малый единичный интервал спектра . Точки спектра при этом могут задаваться их длинами волн, частотами, энергиями квантов излучения, волновыми числами или любым другим способом. Если переменной, определяющей положение точек спектра, является некоторая величина x, то соответствующая ей спектральная плотность потока излучения обозначается как \Phi_{e,x} и определяется как отношение величины d \Phi _e(x), приходящейся на малый спектральный интервал, заключённый между x и x+dx, к ширине этого интервала:

\Phi_{e,x}(x)=\frac{d\Phi_e(x)}{dx}.

Соответственно, в случае использования длин волн для спектральной плотности потока излучения будет выполняться:

\Phi_{e,\lambda}(\lambda)=\frac{d\Phi_e(\lambda)}{d\lambda},

а при использовании частоты -

\Phi_{e,\nu}(\nu)=\frac{d\Phi_e(\nu)}{d\nu}.

Следует иметь в виду, что значения спектральной плотности потока излучения в одной и той же точке спектра, получаемые при использовании различных спектральных координат, друг с другом не совпадают. То есть, например, \Phi_{e,\nu}(\nu)\ne\Phi_{e,\lambda}(\lambda). Нетрудно показать, что с учетом

\Phi_{e,\nu}(\nu)=\frac{d\Phi_e(\nu)}{d\nu}=\frac{d\lambda}{d\nu}\frac{d\Phi_e(\lambda)}{d\lambda} и \lambda=\frac{c}{\nu}

правильное соотношение приобретает вид:

\Phi_{e,\nu}(\nu)=\frac{\lambda^2}{c}\Phi_{e,\lambda}(\lambda).

См. также

Напишите отзыв о статье "Поток излучения"

Примечания

Отрывок, характеризующий Поток излучения

В русском войске по мере отступления все более и более разгорается дух озлобления против врага: отступая назад, оно сосредоточивается и нарастает. Под Бородиным происходит столкновение. Ни то, ни другое войско не распадаются, но русское войско непосредственно после столкновения отступает так же необходимо, как необходимо откатывается шар, столкнувшись с другим, с большей стремительностью несущимся на него шаром; и так же необходимо (хотя и потерявший всю свою силу в столкновении) стремительно разбежавшийся шар нашествия прокатывается еще некоторое пространство.
Русские отступают за сто двадцать верст – за Москву, французы доходят до Москвы и там останавливаются. В продолжение пяти недель после этого нет ни одного сражения. Французы не двигаются. Подобно смертельно раненному зверю, который, истекая кровью, зализывает свои раны, они пять недель остаются в Москве, ничего не предпринимая, и вдруг, без всякой новой причины, бегут назад: бросаются на Калужскую дорогу (и после победы, так как опять поле сражения осталось за ними под Малоярославцем), не вступая ни в одно серьезное сражение, бегут еще быстрее назад в Смоленск, за Смоленск, за Вильну, за Березину и далее.
В вечер 26 го августа и Кутузов, и вся русская армия были уверены, что Бородинское сражение выиграно. Кутузов так и писал государю. Кутузов приказал готовиться на новый бой, чтобы добить неприятеля не потому, чтобы он хотел кого нибудь обманывать, но потому, что он знал, что враг побежден, так же как знал это каждый из участников сражения.
Но в тот же вечер и на другой день стали, одно за другим, приходить известия о потерях неслыханных, о потере половины армии, и новое сражение оказалось физически невозможным.
Нельзя было давать сражения, когда еще не собраны были сведения, не убраны раненые, не пополнены снаряды, не сочтены убитые, не назначены новые начальники на места убитых, не наелись и не выспались люди.
А вместе с тем сейчас же после сражения, на другое утро, французское войско (по той стремительной силе движения, увеличенного теперь как бы в обратном отношении квадратов расстояний) уже надвигалось само собой на русское войско. Кутузов хотел атаковать на другой день, и вся армия хотела этого. Но для того чтобы атаковать, недостаточно желания сделать это; нужно, чтоб была возможность это сделать, а возможности этой не было. Нельзя было не отступить на один переход, потом точно так же нельзя было не отступить на другой и на третий переход, и наконец 1 го сентября, – когда армия подошла к Москве, – несмотря на всю силу поднявшегося чувства в рядах войск, сила вещей требовала того, чтобы войска эти шли за Москву. И войска отступили ещо на один, на последний переход и отдали Москву неприятелю.
Для тех людей, которые привыкли думать, что планы войн и сражений составляются полководцами таким же образом, как каждый из нас, сидя в своем кабинете над картой, делает соображения о том, как и как бы он распорядился в таком то и таком то сражении, представляются вопросы, почему Кутузов при отступлении не поступил так то и так то, почему он не занял позиции прежде Филей, почему он не отступил сразу на Калужскую дорогу, оставил Москву, и т. д. Люди, привыкшие так думать, забывают или не знают тех неизбежных условий, в которых всегда происходит деятельность всякого главнокомандующего. Деятельность полководца не имеет ни малейшего подобия с тою деятельностью, которую мы воображаем себе, сидя свободно в кабинете, разбирая какую нибудь кампанию на карте с известным количеством войска, с той и с другой стороны, и в известной местности, и начиная наши соображения с какого нибудь известного момента. Главнокомандующий никогда не бывает в тех условиях начала какого нибудь события, в которых мы всегда рассматриваем событие. Главнокомандующий всегда находится в средине движущегося ряда событий, и так, что никогда, ни в какую минуту, он не бывает в состоянии обдумать все значение совершающегося события. Событие незаметно, мгновение за мгновением, вырезается в свое значение, и в каждый момент этого последовательного, непрерывного вырезывания события главнокомандующий находится в центре сложнейшей игры, интриг, забот, зависимости, власти, проектов, советов, угроз, обманов, находится постоянно в необходимости отвечать на бесчисленное количество предлагаемых ему, всегда противоречащих один другому, вопросов.

Cтраница 1


Полный поток излучения характеризует данный источник; этот поток нельзя увеличить никакими оптическими системами. При этом сила света / (6, ф) возрастает по одним направлениям и уменьшается по другим.  

Поскольку полный поток излучения лазера с модулированной добротностью значительно превышает поток, допустимый для плоскостного фотоэлемента, следует тем или иным способом линейно ослабить пучок, чтобы существенно уменьшился поток, падающий на приемник. Как мы уже упомянули, обычные способы оптического ослабления не пригодны. Поэтому для ослабления пучок рассеивается на диффузной мишени , так что плотность потока уменьшается за счет отражения энергии в полусферу радиусом R. Хотя блок спресованной окиси магния представляет собой одну из лучших рассеивающих мишеней, имеющихся в настоящее время, такая мишень не полностью ламбертова. Более того, диффузность окиси магния зависит от длины волны, особенно в инфракрасной области , как показано на фиг.  

Методы полных потоков излучения не могут наглядно вскрывать всю физическую картину протекания лучистого переноса теплоты но зато позволяют получить расчетные данные без громоздких вычислений.  

По этой причине полный поток излучения с поверхности нагретой аэрозольной частицы заметно меньше, чем поток с поверхности массивной частицы того же материала. При этом спектр излучения малой аэрозольной частицы смещен в коротковолновую область по сравнению со спектром излучения массивной частицы.  

Типичные значения освещенности.| Обзор фотометрических характеристик и определений.| Световая отдача абсолютно черного тела.  

Оптические фильтры помогают оптимизировать спектральные характеристики и полный поток излучения источника, попадающий на оптический преобразователь, например линзу, а также реакцию чувствительного элемента.  


Мы изучали пропускание различными сортами млечного сока полного потока излучения инфракрасной лампы Мазда 250 впг для сушки.  

Интегральный метод является методом, синтезирующим представления методов многократных отражений и полных потоков излучения. В основу его кладутся интегральные уравнения, которые составляются применительно к отдельным видам излучения Интегральные уравнения, описывают процессы переноса излучением с произвольным распределением оптических свойств излучающей системы тел и промежуточной среды, непрерывно зависящих от координат точки. Они имеют общий и строгий характер, дают возможность составить полное представление о сущности явлений лучистого переноса и проводить их исследование в сложных геометрических системах. Однако решения интегральных уравнений связаны со значительными трудностями.  

Интегральный метод является методом, синтезирующим представления методов многократных отражений и полных потоков излучения. В его основу кладутся интегральные уравнения, которые составляются применительно к отдельным виДам излучения. Интегральные уравнения описывают процессы переноса излучением с произвольным распределением оптических свойств излучающей системы тел и промежуточной среды, непрерывно зависящих от координат точки. Они имеют общий и строгий характер, дают возможность составить полное представление о сущности явлений лучистого переноса и проводить их исследование в сложных геометрических системах. Однако решения интегральных уравнений связаны со значительными трудностями. Поэтому прибегают к их упрощению.  

В сводной таблице приняты следующие ббозна-чения: FT - измерения для полного потока излучения ламп; IR - измерения только для инфракрасной части этого потока.  

Источник излучения характеризуется энергетической светимостью (излучательностью) R3, т.е. полным потоком излучения с единицы поверхности источника.  

Применение радиационных пирометров для измерений температуры реальных тел целесообразно в тех случаях, когда полный поток излучения объекта R мало отличается от 0 при той же температуре.  

Одномерное аэротермохимическое явление имеет место, если векторы среднемассовои скорости, массовых сил и полного потока излучения направлены вдоль одной из трех взаимноортогональных координатный осей, а все термодинамические параметры потока остаются постоянными на поверхностях, ортогональных этой оси.  

По существу, уверенно определяются только спектральный индекс а (см. рис. 53) и полный поток излучения, от которого не так просто перейти к спектральной интенсивности, ибо размеры объекта и расстояния до него оцениваются с известной неопределенностью.  

Излучаемые электромагнитные волны несут с собой энергию.

Рассмотрим поверхность площадью S, через которую электромагнитные волны переносят энергию. На рисунке 7.5 изображена такая площадка.

Прямые линии указывают направления распространения электромагнитных волн. Это лучи - линии, перпендикулярные поверхностям, во всех точках которых колебания происходят в одинаковых фазах. Такие поверхности называются волновыми поверхностями (см. § 46). I называют отношение электромагнитной энергии ΔW, проходящей за время Δt через перпендикулярную лучам поверхность площадью S, к произведению площади S на время Δt:

Фактически это мощность электромагнитного излучения (энергия в единицу времени), проходящего через единицу площади поверхности. Плотность потока излучения в СИ выражают в ваттах на квадратный метр (Вт/м 2). Иногда эту величину называют интенсивностью волны.

Выразим I через плотность электромагнитной энергии и скорость ее распространения с . Выберем поверхность площадью S, перпендикулярную лучам, и построим на ней как на основании цилиндр с образующей cΔt (рис. 7.6). Объем цилиндра ΔV = ScΔt. Энергия электромагнитного поля внутри цилиндра равна произведению плотности энергии на объем: ΔW = wcΔtS. Вся эта энергия за время Δt пройдет через правое основание цилиндра. Поэтому из формулы (7.1) получаем

т. е. равна произведению плотности электромагнитной энергии на скорость ее распространения.

Найдем зависимость плотности потока излучения от расстояния до источника. Для этого надо ввести еще одно новое понятие.

Точечный источник излучения. Источники излучения электромагнитных волн могут быть весьма разнообразными. Простейшим является точечный источник .

Источник излучения считается точечным, если его размеры много меньше расстояния, на котором оценивается его действие. Кроме того, предполагается, что такой источник посылает электромагнитные волны по всем направлениям с одинаковой интенсивностью. Точечный источник - такая же идеализация реальных источников, как и другие модели, принятые в физике: материальная точка, идеальный газ и т. д.

Звезды излучают свет, т. е. электромагнитные волны. Так как расстояния до звезд в огромное число раз превышают их размеры, то именно звезды представляют собой лучшее реальное воплощение точечных источников.

Энергия, которую переносят электромагнитные волны, с течением времени распределяется по все большей и большей поверхности. Поэтому энергия, передаваемая через поверхность единичной площадки за единицу времени, т. е. плотность потока излучения, уменьшается по мере удаления от источника.

Поместим точечный источник в центр сферы радиусом R. Площадь поверхности сферы S = 4πR 2 . Если считать, что источник по всем направлениям за время Δt излучает суммарную энергию ΔW, то

Плотность потока излучения от точечного источника убывает обратно пропорционально квадрату расстояния до источника.

Зависимость плотности потока излучения от частоты. Излучение электромагнитных волн происходит при ускоренном движении заряженных частиц (см. § 48). Напряженность электрического поля Е и магнитная индукция В электромагнитной волны пропорциональны ускорению а излучающих частиц. Ускорение при гармонических колебаниях пропорционально квадрату частоты. Поэтому напряженность электрического поля и магнитная индукция также пропорциональны квадрату частоты:

Е ∼ а ∼ ω 2 , В ∼ а ∼ ω 2 . (7.4)

Плотность энергии электрического поля пропорциональна квадрату напряженности поля. Энергия магнитного поля, как это можно показать, пропорциональна квадрату магнитной индукции. Полная плотность энергии электромагнитного поля равна сумме плотностей энергий электрического и магнитного полей. С учетом формулы (7.2) плотность потока излучения

I ∼ w ∼ (Е 2 + В 2). (7.5)

Так как согласно выражениям (7.4) Е ∼ ω 2 и В ∼ ω 2 , то

I ∼ ω 4 . (7.6)

Плотность потока излучения пропорциональна четвертой степени частоты.

При увеличении частоты колебаний заряженных частиц в 2 раза излучаемая энергия возрастает в 16 раз! В антеннах радиостанций поэтому возбуждают колебания больших частот: от десятков тысяч до десятков миллионов герц.

Электромагнитные волны переносят энергию. Плотность потока излучения (интенсивность волны) равна произведению плотности энергии на скорость ее распространения. Интенсивность волны пропорциональна четвертой степени частоты и убывает обратно пропорционально квадрату расстояния от источника.

Вопросы к параграфу

1. Какую величину называют плотностью потока электромагнитного излучения?

2. Какой источник излучения называется точечным?

3. Почему переменный ток в осветительной сети практически не излучает электромагнитных волн?

Что еще почитать