Тепловые схемы котельных. Котельная с водогрейными котлами

количество удаленного воздуха;

10. Объем воды, проходящей через эжектор,

определяется по формуле

где V В - объемный расход паровоздушной смеси, м 3 /ч;

Vp-мный расход рабочей воды, м 3 / ч:

Исходя из подсчитанных величин абсолютного давления рр=3,77 ат и расхода воды Vp=55,9 м3! производится выбор насосов. Скорость воды на выходе из сопла "14 мм в рассмотренном случае соста­вит 100 м/сек. Следует отметить, что при других кон­структивных размерах эжектора результа­ты подсчета были бы иными.

ТЕПЛОВЫЕ СХЕМЫ ВОДОГРЕЙНЫХ КОТЕЛЬНЫХ ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬЮ 45-90-150 Гкал/ч

Тепловые схемы котельных раз­работаны как для закрытой систе­мы теплоснабжения, так и для схе­мы с непосредственным водоразбором на горячее водоснабжение. Выбор оборудования и тепловые схемы выполнены для случая, ког­да котельные работают как основ­ные источники теплоснабжения. В настоящем параграфе рассмат­риваются также основные условия работы котельных и при пиковом режиме в блоке с ТЭЦ. Тепловые схемы котельных для закрытой системы теплоснабжения Принципиальная тепловая схе­ма котельных, работающих на закрытую систему тепловых сетей, представлена на рис. Вода из обратной линии тепловых сетей по­ступает на всас сетевых насосов 2. Сюда же подается добавочная во­да, подаваемая насосами подпиточной воды 3, и охлажденная котло­вая вода после теплообменников химически очищенной воды 5 и ма­зутных подогревателей.

Насосы сетевой воды 2 подают воду к котлам 1. Сюда же рециркуляционнме насосы 4 подают необхо­димое количество горячей воды для получения на входе в котлы воды (^температурой 70° С. Одновремен­но с этим часть воды из обратной линии сети, минуя котлы, поступает по линии перепуска в прямую ма­гистраль.

Рис. 6-13. Принципиальная тепловая схема котельной для закрытой системы

теплоснабжения. 1-водогрейный котел; 2-насос сетевой воды; 3-подпиточный насос; 4-рециркуляционный на­сос; 5-теплообменник химически очищенной воды; 6 - насос сырой воды; 7 - теплообменник сырой воды; 8 - деаэраторный бак;

9 - деаэрационная колонка; 10 - газоводяной эжектор; 11-рас­ходный бак;

12- охладитель выпара; 13- регулятор температуры; 14- регулятор расхода.

Горячая вода из котлов смеши­вается с обратной, водой и поступа­ет в прямую магистраль теплосети с заданной графиком регулирова­ния температурой.

Добавок сетевой воды, обуслов­ленный потерями в сетях и котель­ной, под напором насосов 6 посту­пает в теплообменник 7, где с по­мощью выпара деаэраторов и рабо­чей жидкости для эжекторов нагре­вается до 20° С.

После химводоочистки добавоч­ная вода нагревается котловой во­дой в теплообменниках 5 до 70° С и направляется в колонку вакуум­ного деаэратора 9. Вода из деаэраторного бака 8 забирается подпиточными насосами 3 и подается на подпитку тепловых сетей и (после охлаждения) на эжекторы. Вода из эжекторов сливается в расходный бак 11 и оттуда подсасывается в ко­лонку деаэратора 9. Абсолютное давление в деаэраторе равно 0,3 ат.

Исходные данные для расчета тепловых схем котельных

Тепловые схемы котельных, как уже упоминалось, разработаны ис­ходя из условия снабжения теплом потребителей по закрытой схеме.

Котельные предназначены для снабжения теплом в виде горячей воды по графику 150-70° С систем отопления, вентиляции и бытового горячего водоснабжения жилых, об­щественных и промышленных зда­ний без отбора воды из сети.

Соотношение отопительновентиляционных нагрузок и нагрузок горяче­го водоснабжения принято равным

при этом среднеча­совой за сутки (расчетный) расход тепла на горячее водоснабжение со­ставляет 16% полной теплопроизводительности котельной.

Все установленные в котельной котлы работают по температурному графику 150-70 С.

Для обеспечения возможности разогрева мазута и подогрева до­бавочной воды, а также для умень­шения количества рециркулирующей воды в контуре горячая вода за котлами должна иметь темпера­туру не ниже 120° С. График работы котлов отличает- ся от температурного графика на­ружных сетей.

Температура прямой сетевой воды поддерживается в зависимо­сти от температуры наружного воз­духа. Минимальная температура прямой сетевой воды определяется из условия, что покрытие нагрузок бытового горячего водоснабжения осуществляется за счет подогрева у абонентов водопроводной воды в теплообменниках, обогреваемых сетевой водой.

Для получения в сети горячего водоснабжения воды с температу­рой 60° С минимальная температу­ра греющей воды должна быть 70° С (точка перелома графика соответствует t н =+2,5°С).

Во избежание коррозии поверх­ностей нагрева котла при работе на мазуте температура воды на входе в котел должна быть не ни­же 70° С. Это достигается путем подмешивания нагретой в котлах воды к воде, входящей в котел. С помощью рециркуляции поддер­живается примерно постоянный про­пуск воды через каждый котел, рав­ный 0.7-1 - номинального расхода. Поддерживается постоянный рас­ход воды в прямой магистрали теп­ловых сетей.

Расчеты тепловых схем котельных выполнены для Московской области.

Климатические показатели:

1.Расчетная температура наружного воздуха для систем отопления-26° С

2. Средняя температура наруж­ного воздуха за отопительный период5,3° С

3. Средняя температура самого хо­лодного месяца...... .-10,2° С

4. Средняя продолжительность отопительногопериода... 186 суток

Ниже в табл. 6-5 приведены данные расчетов тепловых схем котель­ных для различных режимових работы. На основании этих данных производится выбор вспомогатель­ного оборудования котельных с за­крытой схемой (табл. 6-6).

Тепловые схемы с непосредственным водоразбором на горячее водоснабжение

При непосредственном водоразборе вода, подготовленная в ко­тельной, не только является тепло­носителем, но и разбирается из сети для нужд горячего водоснаб­жения.

Разбор воды на горячее водо­снабжение производится непосред­ственно из трубопроводов тепловойсети: при низких температурах на­ружного воздуха - только из об­ратной линии, при высоких темпе­ратурах наружного воздуха - толь­ко из прямой линии, в остальное время из прямой и обратной ли­ний.

По своему назначению котельные малой и средней мощности делятся на следующие группы: отопительные, предназначенные для теплоснабжения систем отопления, вентиляции, горячего водоснабжения жилых, общественных и других зданий; производственные, обеспечивающие паром и горячей водой технологические процессы промышленных предприятий; производственно-отопительные, обеспечивающие паром и горячей водой различных потребителей. В зависимости от вида вырабатываемого теплоносителя котельные делятся на водогрейные, паровые и пароводогрейные.

В общем случае котельная установка представляет собой совокупность котла (котлов) и оборудования, включающего следующие устройства. Подачи и сжигания топлива; очистки, химической подготовки и деаэрации воды; теплообменные аппараты различного назначения; насосы исходной (сырой) воды, сетевые или циркуляционные – для циркуляции воды в системе теплоснабжения, подпиточные – для возмещения воды, расходуемой у потребителя и утечек в сетях, питательные для подачи воды в паровые котлы, рециркуляционные (подмешивающие) ; баки питательные, конденсационные, баки-аккумуляторы горячей воды; дутьевые вентиляторы и воздушный тракт; дымососы, газовый тракт и дымовую трубу; устройства вентиляции; системы автоматического регулирования и безопасности сжигания топлива; тепловой щит или пульт управления.

Тепловая схема котельной зависит от вида вырабатываемого теплоносителя и от схемы тепловых сетей, связывающих котельную с потребителями пара или горячей воды, от качества исходной воды. Водяные тепловые сети бывают двух типов: закрытые и открытые. При закрытой системе вода (или пар) отдает свою теплоту в местных системах и полностью возвращается в котельную. При открытой системе вода (или пар) частично, а в редких случаях полностью отбирается в местных установках. Схема тепловой сети определяет производительность оборудования водоподготовки, а также вместимость баков-аккумуляторов.

В качестве примера приведена принципиальная тепловая схема водогрейной котельной для открытой системы теплоснабжения с расчетным температурным режимом 150- 70°С. Установленный на обратной линии сетевой (циркуляционный) насос обеспечивает поступление питательной воды в котел и далее в систему теплоснабжения. Обратная и подающая линии соединены между собой перемычками – перепускной и рециркуляционной. Через первую из них при всех режимах работы, кроме максимального зимнего, перепускается часть воды из обратной в подающую линию для поддержания заданной температуры.

По условиям предупреждения коррозии металла температура воды на входе в котел при работе на газовом топливе должна быть не ниже 60 °С во избежание конденсации водяных паров, содержащихся в уходящих газах. Так как температура обратной воды почти всегда ниже этого значения, то в котельных со стальными котлами часть горячей воды подается в обратную линию рециркуляционным насосом.

В коллектор сетевого насоса из бака поступает подпиточная вода (насос, компенсирующая расход воды у потребителей). Исходная вода, подаваемая насосом, проходит через подогреватель, фильтры химводоочистки и после умягчения через второй подогреватель, где нагревается до 75- 80 °С. Далее вода поступает в колонку вакуумного деаэратора. Вакуум в деаэраторе поддерживается за счет отсасывания из колонки деаэратора паровоздушной смеси с помощью водоструйного эжектора. Рабочей жидкостью эжектора служит вода, подаваемая насосом из бака эжекторной установки. Пароводяная смесь, удаляемая из деаэраторной головки, проходит через теплообменник – охладитель выпара. В этом теплообменнике происходит конденсация паров воды, и конденсат стекает обратно в колонку деаэратора. Деаэрированная вода самотеком поступает к подпиточному насосу, который подает ее во всасывающий коллектор сетевых насосов или в бак подпиточной воды.

Подогрев в теплообменниках химически очищенной и исходной воды осуществляется водой, поступающей из котлов. Во многих случаях насос, установленный на этом трубопроводе (показан штриховой линией), используется также и в качестве рециркуляционного.

Если отопительная котельная оборудована паровыми котлами, то горячую воду для системы теплоснабжения получают в поверхностных пароводяных подогревателях. Пароводяные водоподогреватели чаще всего бывают отдельно стоящие, но в некоторых случаях применяются подогреватели, включенные в циркуляционный контур котла, а также надстроенные над котлами или встроенные в котлы.

Показана принципиальная тепловая схема производственно-отопительной котельной с паровыми котлами, снабжающими паром и горячей водой закрытые двухтрубные водяные и паровые системы теплоснабжения. Для приготовления питательной воды котлов и подпиточной воды тепловой сети предусмотрен один деаэратор. Схема предусматривает нагрев исходной и химически очищенной воды в пароводяных подогревателях. Продувочная вода от всех котлов поступает в сепаратор пара непрерывной продувки, в котором поддерживается такое же давление, как и в деаэраторе. Пар из сепаратора отводится в паровое пространство деаэратора, а горячая вода поступает в водоводяной подогреватель для предварительного нагрева исходной воды. Далее продувочная вода сбрасывается в канализацию или поступает в бак подпиточной воды.

Конденсат паровой сети, возвращенный от потребителей, подается насосом из конденсатного бака в деаэратор. В деаэратор поступает химически очищенная вода и конденсат пароводяного подогревателя химически очищенной воды. Сетевая вода подогревается последовательно в охладителе конденсата пароводяного подогревателя и в пароводяном подогревателе.

Во многих случаях в паровых котельных для приготовления горячей воды устанавливают и водогрейные котлы, которые полностью обеспечивают потребность в горячей воде или являются пиковыми. Котлы устанавливают за пароводяным подогревателем по ходу воды в качестве второй ступени подогрева. Если пароводогрейная котельная обслуживает открытые водяные сети, тепловой схемой предусматривается установка двух деаэраторов – для питательной и подпиточной воды. Для выравнивания режима приготовления горячей воды, а также для ограничения и выравнивания давления в системах горячего и холодного водоснабжения в отопительных котельных предусматривают установку баков-аккумуляторов.

Тягодутьевые установки по схеме применения бывают: общие – для всех котлов котельной; групповые – для отдельных групп котлов; индивидуальные – для отдельных котлов. Общие и групповые установки должны иметь два дымососа и два дутьевых вентилятора. Индивидуальные установки по условиям регулирования их работы при изменении производительности котла являются наиболее желательными.

Исходные данные для расчета …..……………………………………………….3

1. Аналитический расчет принципиальной тепловой схемы водогрейной котельной …………..………………………………………………………5

2. Расчет принципиальной тепловой схемы водогрейной котельной с применением ЭВМ ……………………………………………………….12

2.1 Файл исходных данных ……………………………………………...12

2.2 Результаты расчета …………………………………………………...14

Вывод …….………………………………………………………………………15

Список используемой литературы ………….………………………………….15


Исходные данные для расчета

Расчет выполняется для приведенной на рисунке 1 принципиальной тепловой схемы котельной. Котельная предназначена для снабжения горячей водой жилых и общественных зданий для нужд отопления, вентиляции и горячего водоснабжения.

Тепловые нагрузки котельной с учетом потерь в наружных сетях при максимально-зимнем режиме следующие: на отопление 6,84 Гкал/ч; на вентиляцию 0 Гкал/ч и на горячее водоснабжение 2,16 Гкал/ч. Общая теплопроизводительность котельной 9,0 Гкал/ч.

Тепловые сети работают по температурному графику 150-70 °С, для горячего водоснабжения принята смешанная схема подогрева воды у абонентов. Расчетная минимальная температура наружного воздуха –55 °С. Подогрев сырой воды перед химводоочисткой принят до 20 °С от 5 °С зимой и 15 °С летом. Деаэрация воды осуществляется в деаэраторе при атмосферном давлении.

Для удобства приведена таблица 1 «Исходные данные», для расчета тепловой схемы котельной, работающей на закрытую систему теплоснабжения. Эта таблица составляется на основании проекта системы теплоснабжения или расчета расходов теплоты различными потребителями по укрупненным показателям. Расчет производится для трех характерных режимов: максимально-зимнего, наиболее холодного месяца и летнего.


Рис. 4.3. Принципиальная тепловая схема котельной с водогрейными котлами

1 – котел водогрейный; 2 – насос сетевой; 3 – насос рециркуляционный; 4 – насос сырой воды;

5 – насос подпиточной воды; 6 – бак подпиточной воды; 7 – подогреватель сырой воды; 8 – подогреватель

химически очищенной воды; 9 – охладитель подпиточной воды; 10 – деаэратор; 11 – охладитель выпара


Таблица 1 «Исходные данные»

Наименование Размерность Обо-зна-чение Значение величины при характерных режимах работы котельной
максимально-зимнем наиболее холодного месяца летнем
Место расположения котельной - г. Хабаровск
Максимальные расходы теплоты: МВт
на отопление жилых и общественных зданий МВт - -
на вентиляцию общественных зданий МВт - -
на горячее водоснабжение МВт 2,5 2,5
Расчетная температура наружного воздуха для отопления °С -55 -43,2 -
Расчетная температура наружного воздуха для вентиляции °С -45 - -
Температура воздуха внутри помещений °С -
Температура сырой воды °С
Температура подогретой сырой воды перед химводоочисткой °С
Температура подпиточной воды после охладителя деаэрированной воды °С
Коэффициент собственных нужд химводоочистки - 1,25 1,25 1,25
Температура воды на выходе из водогрейных котлов °С
Температура воды на входе в водогрейные котлы °С
Расчетная температура горячей воды после местных теплообменников горячего водоснабжения °С
Предварительно принятый расход химически очищенной воды т/ч 0,7
Предварительно принятый расход воды на подогрев химически очищенной воды т/ч 0,15
Температура греющей воды после подогревателя химически очищенной воды °С
КПД подогревателей - 0,98 0,98 0,98

Аналитический расчет принципиальной тепловой схемы водогрейной котельной

Расчет тепловой схемы котельной c водогрейными котлами, работающей на закрытую систему теплоснабжения рекомендуется проводить в следующей последовательности.

1. Определяется коэффициент снижения расхода теплоты на отопление и вентиляцию для режима наиболее холодного месяца:

2. Температура воды в подающей линии на нужды отопления и вентиляции для режима наиболее холодного месяца:

где -температура внутри помещения; -температурный напор в нагревательном приборе; - расчетная разность температур сетевой воды; -расчетный перепад температур в отопительной системе.

Из исходных данных следует: ; ;

3. Температура обратной сетевой воды после систем отопления и вентиляции для режима наиболее холодного месяца:

4. Отпуск теплоты на отопление и вентиляцию:

5. Суммарный отпуск теплоты на нужды отопления, вентиляции и горячего водоснабжения:

Для максимально-зимнего режима

Для режима наиболее холодного месяца

6. Расход воды в подающей линии системы горячего водоснабжения потребителей для максимально-зимнего режима:

т/ч.

7. Тепловая нагрузка подогревателя первой ступени (на обратной линии сетевой воды) для режима наиболее холодного месяца:

8. Тепловая нагрузка подогревателя второй ступени для режима наиболее холодного месяца:

9. Расход сетевой воды на местный теплообменник второй ступени, т.е. на горячее водоснабжение, для режима наиболее холодного месяца:

т/ч.

10. Расход сетевой воды на местный теплообменник для летнего режима:

т/ч.

11. Расход сетевой воды на отопление и вентиляцию:

Для максимально-зимнего режима

т/ч;

Для режима наиболее холодного месяца

т/ч.

12. Расход сетевой воды на отопление, вентиляцию и горячее водоснабжение:

Для максимально-зимнего режима

Для режима наиболее холодного месяца

Для летнего режима

13. Температура обратной сетевой воды после внешних потребителей

°С;

Для режима наиболее холодного месяца

°С;

Для летнего режима

°С.

14. Расход подпиточной воды для восполнения утечек в теплосети внешних потребителей:

Для максимально-зимнего режима

Для режима наиболее холодного месяца

Для летнего режима

15. Расход сырой воды, поступающей на химводоочистку:

Для максимально-зимнего режима

Для режима наиболее холодного месяца

Для летнего режима

16. Температура химически очищенной воды после охладителя деаэрированной воды:

Для максимально-зимнего режима

Для режима наиболее холодного месяца

Для летнего режима

17. Температура химически очищенной воды, поступающей в деаэратор

Для максимально-зимнего режима:

Для режима наиболее холодного месяца

Для летнего режима

18. Проверяется температура сырой воды перед химводоочисткой:

Для летнего режима

19. Расход греющей воды на деаэратор:

Для максимально-зимнего режима и наиболее холодного месяца

Для летнего режима

20. Проверяется расход химически очищенной воды на подпитку теплосети:

Для максимально-зимнего режима и наиболее холодного месяца

Для летнего режима

21. Расход теплоты на подогрев сырой воды:

Для максимально-зимнего режима и наиболее холодного месяца

Для летнего режима

22. Расход теплоты на подогрев химически очищенной воды:

Для максимально-зимнего режима и наиболее холодного месяца

Для летнего режима

МВт <0, значит, подогрев химически очищенной воды в летний период не требуется.

23. Расход теплоты на деаэратор:

Для максимально-зимнего режима и наиболее холодного месяца

Для летнего режима

24. Расход теплоты на подогрев химически очищенной воды в охладителе деаэрированной воды:

Для максимально-зимнего режима и наиболее холодного месяца

Для летнего режима

25. Суммарный расход теплоты, необходимый в водогрейных котлах:

Для максимально-зимнего режима

Для режима наиболее холодного месяца

Для летнего режима

26. Расход воды через водогрейные котлы:

Для максимально-зимнего режима

т/ч;

Для режима наиболее холодного месяца

т/ч;

Для летнего режима

т/ч.

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Руководствуясь заданием на проектирование и исходными данными, полученными от заказчика, приступают к составлению, а затем и расчету тепловой схемы котельной, оборудованной стальными водогрейными котлами (рис. 3.2).

Рис. 3.2. Принципиальная тепловая схема водогрейной котельной

1 – сетевой насос; 2 – водогрейный котел; 3 – сетевой насос; 4 – подогреватель химочищенной воды; 5 – подогреватель сырой воды; 6 – вакуумный деаэратор; 7 – подпиточный насос; 8 – насос сырой воды; 9 – химводоподготовка; 10 – охладитель выпара; 11 – водоструйный эжектор; 12 – расходный бак эжектора; 13 – эжекторный насос

Для уменьшения интенсивности наружной коррозии труб «хвостовых» поверхностей нагрева стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы уходящих из котлов дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60°С; при работе на малосернистом мазуте – не ниже 70°С; при работе на высокосернистом мазуте – не ниже 110°С. В связи с тем, что температура воды в обратных магистралях тепловых сетей почти всегда ниже 60°С, в обвязке водогрейных котлов предусматривают рециркуляционные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных карт котлоагрегатов.

При выполнении рабочих (монтажных) схем котельных применяют общестанционную или агрегатную схему компоновки оборудования. Выбор общестанционного или агрегатного способа в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них при компоновке по агрегатной схеме являются облегчение учета и регулирования расхода и параметров теплоносителя от каждого агрегата, уменьшения протяженности в пределах котельной сетевых трубопроводов большого диаметра и упрощения ввода в эксплуатацию каждого агрегата.

Тепловая схема котельной для открытой системы теплоснабжения отличается от таковой для закрытой в основном производительностью водоподготовки для подпитки тепловых сетей. Так как расходы воды при открытой системе неравномерны по времени, то для выравнивания суточного графика нагрузок на горячее водоснабжение и уменьшения расчетной производительности котлоагрегатов и оборудования водоподготовки предусматривают установку баков-аккумуляторов деаэрированной горячей воды. Из них в часы максимума потребления горячая вода подпиточными насосами подается во всасывающую магистраль сетевых насосов. Суммарная емкость баков-аккумуляторов принимается в 10 раз большей среднечасового за сутки расхода воды на бытовое горячее водоснабжение.



Количество, единичная производительность и развиваемые напоры насосов котельной должны соответствовать требованиям регулирования работы тепловых сетей при экономном расходовании электроэнергии на их привод. Такие условия иногда диктуют необходимость использования в тепловых схемах котельных увеличенного количества насосов – сетевых (зимних и летних), перекачивающих, рециркуляционных и подпиточных (также зимних и летних).

При выборе системы теплоснабжения (закрытой или открытой) нужно учитывать, по меньшей мере, три особенности исходной воды, используемой для подпитки: склонность к низкотемпературному накипеобразованию; коррозионную активность; склонность к сульфидному загрязнению.

Принципиальная тепловая схема (ПТС) котельной с паровыми котлами для потребителей пара и горячей воды показана на рис. 8.

Паровые котельные чаще всего предназначены для одновременного отпуска пара и горячей воды, поэтому в их тепловых схемах имеются установки для подогрева горячей воды.

Обычно устанавливаются паровые котлы низкого давления 14 ата, но не выше 24 ата.

Сырая вода поступает из водопровода с напором в 30–40 м. вод. ст. Если напор сырой воды недостаточен, предусматривают установку насосов сырой воды 5.

Сырая вода подогревается в охладителе непрерывной продувки паровых котлов 11 и в пароводяном подогревателе сырой воды 12 до температуры 20-30 ºС. Далее вода проходит через водоподготовительную установку (ВПУ), и часть ее направляется в подогреватель химически очищенной воды 13, часть проходит через охладитель выпара деаэратора 4 и поступает в деаэратор питательной воды (ДПВ) 2. В этот деаэратор направлены также потоки конденсата и пар после редукционно-охладительной установки (РОУ) 17 с давлением 1,5 ата для подогрева деаэрируемой воды до 104 0 С. Деаэрированная вода при помощи питательного насоса (ПН) 6 подается в водяные экономайзеры котла и к охладителю РОУ. Часть выработанного котлами пара редуцируется в РОУ и расходуется для подогрева сырой воды и деаэрации.

Рис. 8. Принципиальная тепловая схема котельной с паровыми котлами

1– котел паровой, 2 – деаэратор питательной воды (ДПВ), 3 – деаэратор подпиточной воды, 4 – охладитель выпара, 5 – насос сырой воды, 6 – насос питательный (ПН), 7 – насос подпиточный, 8 – насос сетевой (СН), 9 – насос конденсатный (КН), 10 – бак конденсатный, 11 – охладитель продувочной воды (ОПВ), 12 – подогреватель сырой воды, 13 – подогреватель хим. очищенной воды (ПХОВ), 14 – охладитель подпиточной воды, 15 – охладитель конденсата, 16 – подогреватель сетевой воды, 17 – редукционно-охладительная установка (РОУ), 18 – сепаратор непрерывной продувки, 19 – продувочный колодец, ВПУ – водоподготовительная установка.

Вторая часть потока хим. очищенной воды подогревается в подогревателе 14, частично в охладителе выпара 4 и направляется в деаэратор подпиточной воды для тепловых сетей 3. Вода после этого деаэратора проходит водо-водяной теплообменник 14 и подогревает хим. очищенную воду. Подпиточным насосом 7 вода подается в трубопровод перед сетевыми насосами 8, которые прокачивают сетевую воду сначала через охладитель конденсата 15 и затем через подогреватель сетевой воды 16, откуда вода идет в тепловую сеть.



Деаэратор подпиточной воды 3 также использует пар низкого давления после РОУ. При закрытой системе теплоснабжения расход воды на подпитку тепловых сетей обычно незначителен. В этом случае довольно часто не выделяют отдельного деаэратора для подготовки подпиточной воды тепловых сетей, а используют деаэратор питательной воды паровых котлов.

На приведенной схеме предусматривается использование теплоты непрерывной продувки паровых котлов. Для этой цели устанавливают сепаратор непрерывной продувки 18, в котором вода частично испаряется за счет снижения ее давления от 14 до 1,5 ата. Образующийся пар отводится в паровое пространство деаэратора, горячая вода направляется в водо-водяной теплообменник сырой воды 11. Охлажденная продувочная вода сбрасывается в продувочный колодец.

Непрерывная продувка обеспечивает равномерное удаление из котла накопившихся растворенных солей и осуществляется из места наибольшей их концентрации в верхнем барабане котла. Периодическая продувка применяется для удаления шлама, осевшего в элементах котла, и производится из нижних барабанов и коллекторов котла через каждые 12-16 часов. Иногда предусматривают подачу продувочной воды для подпитки закрытых тепловых сетей. Подпитка тепловых сетей продувочной водой допускается только в том случае, когда общая жесткость сетевой воды не превышает 0,05 мг-экв/кг.

ПТС котельной для открытых систем теплоснабжения отличается от приведенной только установкой дополнительного деаэратора для деаэрации подпиточной воды тепловых сетей и установкой баков-аккумуляторов.

Конденсат от пароводяных подогревателей под давлением греющего пара во всех случаях следует направлять в ДПВ, минуя конденсатные баки 10 и насосы 9. При открытых системах теплоснабжения для деаэрации подпиточной воды устанавливают, как правило, атмосферные деаэраторы. Использование продувочной воды котлов в качестве подпиточной для открытых систем не допускается. Температура питательной воды после деаэратора 104 °С. Температура возвращаемого с производства конденсата 80–95 °С.



Принципиальная тепловая схема котельной с водогрейными котлами для закрытых систем теплоснабжения

ПТС котельных с водогрейными котлами для закрытых систем теплоснабжения показана на рис. 9.

Вода из обратной линии тепловых сетей с небольшим напором 20–40 м. вод. ст. поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки волы в тепловых сетях. К насосу 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева хим. очищенной воды 8 и сырой воды 7.

Для обеспечения температуры воды на входе в котел, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Вода подается рециркуляционным насосом 3.

При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей.

Добавка хим. очищенной воды подогревается в теплообменниках 9, 8, 11 и деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии теплосети. Только при расчетном максимально зимнем режиме температура воды на выходе из котлов и в подающей линии будет одинаковой.

Для закрытых систем даже в мощных водогрейных котельных можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов 5 и оборудование ВПУ, снижаются требования к качеству подпиточной воды по сравнению с открытыми системами.

Недостаток закрытых систем – некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества проходящей через них воды. Расход воды должен быть постоянным, независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществить путем изменения температуры воды на выходе их котлов G пер.

Для уменьшения интенсивности наружной коррозии трубных поверхностей стальных водогрейных котлов необходимо поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов.

Минимальная допустимая температура на входе в котлы рекомендуется следующая: при работе на природном газе – не ниже 60 °С; при работе на малосернистом мазуте – не ниже 70 °С; при работе на высокосернистом мазуте – не ниже 110°С. Так как температура обратной сетевой воды почти всегда ниже 60 °С в тепловых схемах предусматривается линия рециркуляции.

Для определения температуры воды в тепловых сетях для различных расчетных температур наружного воздуха строятся графики, разработанные теплоэлектропроектом. Например, из такого графика видно, что при температурах наружного воздуха +3 ºС и выше вплоть до конца отопительного сезона температура прямой сетевой воды постоянна и равна 70 0 С.

Среднечасовой расход в сутки теплоты на горячее водоснабжение обычно составляет 20% общей теплопроизводительности котельной:

3 % – потери наружных тепловых сетей;

3 % – расходы на собственные нужды от установленной теплопроизводительности котельной;

0,25 % – утечка из тепловых сетей закрытых систем;

0,25 % – объем воды в трубах тепловых сетей.

Рис. 9. Принципиальная тепловая схема котельной с водогрейными котлами для закрытой системы теплоснабжения

1 – котел водогрейный, 2 – насос сетевой (СН), 3 – насос рециркуляции, 4 – насос сырой воды (НСВ), 5 – насос подпиточной воды, 6 – бак подпиточной воды, 7 – подогреватель сырой воды, 8 – подогреватель хим. очищенной воды (ПХОВ), 9 – охладитель подпиточной воды, 10 – деаэратор, 11 – охладитель выпара, 12 – водоподготовительная установка (ВПУ).

Что еще почитать