Выращивание растений в замкнутых экосистемах. Как создать вечный флорариум (закрытую экосистему) своими руками

Опыты по созданию замкнутых экологических систем с целью жизнеобеспечения человека (для работы в космосе или в экстремальных климатических условиях на Земле, или, скажем, спасения в случае резкого ухудшения условий жизни на планете) велись и ведутся в разных странах, в том числе и у нас. Самый, наверное, эффектный и наглядный из них проводился в 1991-94 годах в Аризоне и был первой масштабной попыткой моделирования процессов, происходящих в естественных экосистемах Земли. На площади в полтора гектара был построен герметичный комплекс из нескольких зданий и оранжерей, внутри которого, помимо жилых и технических помещений, были упрощенно смоделированы 5 биомов: тропический лес, океанский риф, пустыня, саванна и мангровый эстуарий, а также агроценоз для выращивания продуктов питания и скота. Всё это вместе должно было работать как полностью замкнутая экосистема (снаружи обеспечивался только приток энергии, но он и для земных экосистем идет извне - от Солнца), обеспечивающая автономное существование 8 человек на протяжении нескольких лет.

2)

Фотографии со строительства "Биосферы-2" неиллюзорно напоминают кадры создания планеты из фильма "Автостопом по Галактике"

В общей сложности в гигантскую теплицу было заключено около 3000 видов животных и растений, видовой состав которых был подобран так, чтобы наилучшим образом имитировать биосферный круговорот веществ, включающий продуцирование и разложение органики, в том числе и естественное разложение отходов жизнедеятельности людей.

Для компенсации перепадов давления в комплексе при изменениях суточной температуры в отдельном куполе был установлен прибор, получивший прозвание "легких" - огромный поднимающийся и опускающийся алюминиевый диск, соединенный со стенами гибкой резиновой мембраной. Компенсатор не столько предотвращал разрушение конструкций при критической разницы в давлении, сколько минимизировал газообмен "Биосферы-2" с атмосферой Земли через микротрещины в конструкции - идеально герметизировать столь огромное помещение практически невозможно, и потери (или приток) возрастают при увеличении градиента давления между внешней и внутренней средой. Общий объём атмосферы комплекса составлял около 204 000 кубометров, обмен с земной атмосферой в единицу времени был – специально замеряли – в 30 раз меньше, чем утечка воздуха из "Спейс Шаттла", находящегося в космосе.

26 сентября 1991 года добровольцы-исследователи - четыре мужчины и четыре женщины - закрыли за собой герметические двери и эксперимент начался. Связь с внешним миром обеспечивалась только через интернет и по телефону, ну и взглядами через стеклянные стены.

16)

Последний кадр - современный, поэтому мониторы с ЭЛТ перемежаются жидкокристаллическими. Но сделан в том самом куполе, что виден на КДПВ.

Первые же недели эксперимента показали, что воссоздание природного равновесия - не такое уж простое дело. Уровень кислорода начал падать примерно на 0,5% каждый месяц. И дело оказалось не в том, что экспериментаторы неправильно рассчитали количество "колонистов", перенаселив станцию, а в непредвиденном размножении микроорганизмов - те буквально заполонили посевы, саванну и лес, истребляя всходы и меняя экосистему под себя, не считаясь с планами человека. Кстати, с проблемой микробов в космосе человечество столкнулось уже сейчас, например на МКС, где активно размножающиеся в труднодоступных закоулках маленькие поганцы вредят даже механизмам, повреждая полимеры и органику, способствуя коррозии металлов, формированию биопленок и "тромбов" в трубопроводах и системах регенерации воды.

Второй проблемой стали макроорганизмы. Из-за того, что пищевые цепи искусственных экосистем "Биосферы-2" оказались неполными, урезанными, насекомые и другие беспозвоночные тоже стали вести себя не как было запланировано, а как им вздумается. Почему-то начали вымирать опылители, а численность других созданий в отсутствие естественных врагов стала неконтролируемо расти, превращая их из помощников во вредителей. При этом обнаружились неожиданные побочные эффекты - тараканы, к примеру, взяли на себя роль опылителей, но делу это не сильно помогало: произведенный с их помощью урожай они же и старались пожрать, еще и потребляя в процессе драгоценный кислород.

Положение осложнялось тем, что в эксперименте нельзя было использовать пестициды - не по этическим соображениям, а потому что процессы самоочищения в таких небольших, да еще и замкнутых экосистемах проходят очень медленно, а это значит, что отравление химикатами всех обитателей, в том числе и людей, было бы неизбежным.

21)

Для очистки воды использовались в том числе водяные гиацинты (на переднем плане)

В результате "колонисты" (хотя через пару недель после начала эксперимента их стало уже 7 - одна из участниц покинула проект из-за травмы) столкнулись не только с нехваткой воздуха, но и пищи. Пришлось увеличить плотность засева зерновых, а в тропическом лесу дополнительно высадить манго и папайю. На страх вредителям из внешнего мира были доставлены 40 гекконов и 50 жаб.

Подселение манго и жаб в принципе не противоречило условиям эксперимента - это была, так сказать, коррекция первоначальных расчетов. Но когда содержание кислорода снизилось с 21% до 15% - как на высоте в 4 км - организаторы эксперимента в тайне от общественности пошли на прямое "читерство": начали закачивать в комплекс кислород. Гекконы тоже не спасли положение: каждый день приходилось тратить массу времени на ручной сбор вредителей, но и он не помог справиться с продовольственным кризисом, и тогда к кислороду "с большой земли" добавились продукты (эти факты скрывались и были разоблачены впоследствии).

В ходе проведения эксперимента обнаружились и другие непредвиденные обстоятельства. Некоторые просто интересные: так, по утрам в оранжереях шел дождь: влага конденсировалась на стеклянной крыше и к утру падала вниз, в результате спустя некоторое время после начала эксперимента "пустыня" стала второй "саванной".

Из неожиданных проблем стоит отметить отсутствие ветра: оказывается, для нормального развития деревьям нужно регулярное раскачивание, без него механические ткани древесины оказываются недостаточно развитыми - деревьям тоже нужна тренировка! Без ветра же стволы и ветви деревьев "Биосферы-2" становились хрупкими и ломались под тяжестью собственного веса.

В отличие от ветра, фактор волн для полноценного функционирования "океана" и "эстуария" создатели предусмотрели - специальный механизм создавал движение воды. Кораллы за время эксперимента дали 85 дочерних колоний. Впрочем, многие другие обитатели "океана" и других биомов вымерли или уменьшились в числе.

Довольно быстро в полный рост встала проблема психологической совместимости. В итоге команда постоянно запертых в компании друг друга в закрытом помещении людей распалась на две противоборствующие группы. Подробности не разглашаются, но, пишут, бывшие участники эксперимента избегают встреч с членами "противоположного лагеря" и по сей день. Фактор известный, на нем построено множество реалити-шоу, но проведению эксперимента, посвященного совсем другой тематике, это сильно мешало. И это всё происходило в условиях постоянной связи с внешним миром, возможности помощи психолога и т.п. - а какие формы может принимать неожиданно возникающий антагонизм в небольшом коллективе в полностью автономной колонии, большинство из нас может только догадываться.

В итоге 26 сентября 1993 года эксперимент пришлось прервать. В 1994 году была предпринята вторая попытка, в результате которой спонсоры отказались от проекта, признавая, что эксперимент не принес ожидаемых результатов, и передали комплекс Колумбийскому университету. В 1996 году и там решили прекратить эксперимент и удалить из сооружения людей, поскольку так и не смогли решить проблему питания и сохранения неизменного состава воздуха. Исследования искусственной биосферы продолжались, но уже без подопытных людей и без строгого автономного режима. Некоторые биомы стали доступны для экскурсантов, и на фотографиях с таких экскурсий можно наблюдать сегодняшнее печальное положение искусственной биосферы:

В 2005 году "Биосфера-2" была выставлена на продажу, и насколько я понял, продается по сей день.

Эксперимент этот можно назвать провалившимся, но не безрезультатным. Безусловно, в ходе его проведения и при последующей работе было получено множество данных, которые пригодятся (и уже пригождаются) в дальнейших исследованиях такого рода. В целом же можно сказать, что путь до создания полностью автономных и успешно регулирующихся экосистем, способных обеспечить существование, скажем, колонистов на другой планете, предстоит еще неблизкий. Впрочем, черт с ними, с колонистами - "Биосфера-2" это один из ярких примеров, когда вложения в исследования космических технологий в конечном счете помогают улучшению жизни здесь, на Земле.

И второй, "обратный" вывод из этой увлекательной истории: мы не сможем покорить космос, пока не научимся сохранять, восстанавливать и регулировать среду обитания на Земле. Мы пока не можем основать долгосрочные автономные поселения на орбите и других планетах, и дело отнюдь не в финансировании и мощности двигателей: у нас пока нет необходимых знаний и опыта для создания среды жизнеобеспечения. А уж "спасение в космосе от экологической катастрофы" – вообще оксюморон, вроде круглого квадрата.

Здравствуй, Хабр!

Недавно наткнулся в интернете на интересную статью, с точки зрения садоводства, об англичанине, который 53 года назад посадил в банку традесканцию .Он закупорил бутылку и, после полива 40 лет назад, больше не открывал её. Идеи пришла ему из любопытства. И по сей день растение живет, растет и поглощает кислород. Традесканция образовала экосистему: при фотосинтезе образуется кислород, происходит увлажнение воздуха внутри сосуда и выпадает влага, опавшие листья перегнивают, выделяя CO 2 . Но для фотосинтеза нужен еще и свет, поэтому бутылку нужно постоянно пододвигать к окну и разворачивать, чтобы листья росли равномерно. Я добавил немного электроники для комнатного растения, и вот, что из этого получилось.

Этап Первый
Как уже говорилось, в процессе фотосинтеза самое важное это свет. Но не любой!

Для растений наиболее важным является сине-зеленый и желто-красный. Длины волн соответственно от 440 до 550 нм и от 600 до 650 нм. Я пошел в магазин и купил 4 красных, 2 синих и 2 зеленых светодиода (прочитав на «Радиокоте»). Далее, расположил их под крышкой банки, закрепив на картонке, и соединил параллельно (на 2 красных 1 синий и 1 зеленый).
Т. к. светодиоды разных цветов свечения имеют разное напряжение питания, поставил резисторы.
В крышке сделал отверстие для проводов и укрепил картонку со светодиодами под крышкой, предварительно просунув провода в дырку. Для большей изоляции от внешнего мира дырку можно заклеить.

Ревизия модуля освещения от 01.07.13.
Модуль специально был покрыт толстым слоем Цапонлака для предотвращения коррозии выводов элементов и меди на плате.

Этап Второй
Основное, т. е. подсветку, я уже сделал, поэтому перехожу к полезным дополнениям.
1. Чтобы свет горел только тогда, когда растение находится в тени, нужно добавить фотоэлемент.
Схема подключения:

Чтобы сделать горшок совсем умным, подключим к нему Arduino. Analog InPut на схеме - любой аналоговый вход у Arduino. На ШИМ (или PWM) выход повесим светодиоды, яркость свечения которых будет изменяться в зависимости от освещенности фоторезистора. Но для начала выясним, какие значения будет выдавать делитель напряжения.

Код

int sensor =0; // подключаем делитель к аналоговому входу Arduino A0 void setup() { Serial.begin(9600); } void loop() { Serial.println(analogRead(sensor)); delay(1000); // Отправляет значения с делителя раз в секунду }


В своей схеме я использовал фоторезистор из электронного конструктора ЗНАТОКа. У него теневое сопротивление 120 кОм. Расчет резистора R1 производится по формуле: R 1 =V in *R 2:V out -R 2 ; V in на схеме - +5V, V out - «к аналоговому входу Arduino» (Я надеюсь, все хорошо помнят порядок действий: сначала действия первой степени - умножение и деление, а потом второй - сложение и вычитание). Также, следует помнить, что сопротивление у фоторезистора может изменяться нелинейно .
Минимальное значение освещения с моего делителя - около 100 (назовём их условными единицами), максимальное - около 755 у.е.
Зная эти значения можно написать программу для Arduino - контроллера.

Код

int sensor = 0; // Потенциометр к А0 int ledPin = 9; //Светодиоды к выходу 9 void setup () { analogReference(DEFAULT); pinMode(ledPin, OUTPUT); //Serial.begin(9600); Раскомментируйте эту строку для отображения текущей //освещенности в у.е. в Мониторе Порта. } void loop() { int val = analogRead(sensor); val = constrain(val, 130, 755); //Выставляем значения освещенности. //Если < 130, то превращаем в 130, если > 755, то выставляем в 755. int ledLevel = map(val, 130, 755, 0, 255); //Превращаем значения освещенности и у.е. //в 8-битные значения для ШИМ. analogWrite(ledPin, ledLevel); // Serial.println(analogRead(ledLevel)); Раскомментируйте эту строку для отображения текущей //освещенности в у.е. в Мониторе Порта. }

Также, обратите внимание на то, что максимальный ток через цифровые Входы/Выходы Ардуины не должен превышать 40мА .

2. Вместо цифрового метода определения уровня освещенности можно использовать аналоговый. Добавив к делителю стабилитрон и транзистор получим все тоже, что и с процессором, только в меньшем объеме. Схема:


Стабилитрон D1 - любой мощности на 3.6 В. Транзистор T1 - любой NPN.

P.S. Смотрелось бы намного лучше, если бы провода не торчали. Сама конструкция будет технологичнее, если на дно банки положить катушку и питать подсветку без проводов (по примеру беспроводной зарядки у телефонов).

На фото ниже представлена первая экспериментальная банка. Растение в нее было посажено 01.06.13.


Впоследствии, от этой банки решено было отказаться, т.к. растению в ней не хватало места для роста (также, стальная крышка, с большой долей вероятности, за 40 лет использования, заржавеет:)).


Взамен маленькой литровой банки, растения были посажены в большие - 3-ех литровые. Заменена была и крышка - на полиэтиленовую.
P.S.S. Дата посадки: 30.06.2013 (01.07.13 была открыта банка для замены модуля освещения).
Фото 1: 10.07.13

Фото 2: 17.07.13. На фото ниже видно как на стенках начала проявляться растительность. Это свидетельствует о том, что простейшие виды растений тоже чувствуют себя в системе хорошо.

Фото 3: 02.09.13

Также, для эксперимента, в банку с денежным деревом была посажена косточка мандарина (предварительно не выдерживавшаяся во влажной марле и т.п.). Как видно на фото выше, сейчас она проросла.
По мере накопления экспериментальный данных, информация будет выкладываться здесь.

У многих из вас дома есть комнатные растения, которые радуют глаз, служат украшениями для интерьера и снабжают вас кислородом. Существует невероятно большое количество видов подобных растений и также немало способов их выращивания и содержания.

Сегодня мы сконструируем самодостаточную экосистему, которая не требует ухода за собой и будет хорошим украшением для вашего интерьера или оригинальным подарком.

Флорариум , растительный террариум - специальная закрытая ёмкость, изготовленная из стекла или других прозрачных материалов и предназначенная для содержания и разведения растений. Внутри создаются определённая влажность воздуха и температура, что способствует созданию среды для нормального развития и существования растений. Флорариумы появились в середине XIX века. Первыми растениями, которые стали использоваться во флорариумах, были различные виды папоротников.

Как следует из описания, нам понадобится закрытая стеклянная ёмкость. Можно использовать стеклянные банки, медицинские колбы, бутылки, в общем, любой сосуд, который без проблем герметично закрывается. Вбив поисковый запрос «закрытая экосистема», я нашёл интересный вариант, в котором используется обычная лампочка накаливания, и кучу материала как, не повредив стекло, разобрать её и посадить туда растения. Этот вариант мне показался довольно интересным и простым в сборке, его я и решил испробовать.

И так, что нам понадобится для создания нашей миниатюрной экосистемы:

1) Мелкие камни для дренажа и камни для композиции
2) Песок
3) Плодородная почва
4) Различные виды мха
5) Кора, мелкие ветки для композиции
6) Камень или коряга для платформы
7) Лампочка накаливания
8) Двухкомпонентный клей или термоклей
9) Плоскогубцы
10) Плоская отвёртка
11) Пинцет
12) Шприц
13) Вода
14) Бумага

После небольшой прогулки по лесу и окрестностям города, я без проблем нашёл весь необходимый мне материал.

Приступаем к сборке. Первое что нужно сделать, это подготовить нашу лампочку. С помощью плоскогубцев и некоторого усилия аккуратно разламываем чёрную керамическую изоляцию, стараясь при этом не погнуть основание лампочки и не разбить стекло.

У вас должно получиться отверстие как на фотографии ниже.

Далее, с помощью плоской отвёртки вам нужно разбить и выдавить стеклянный стержень, на котором крепиться нить накаливания и извлечь его из лампочки. Старайтесь сделать максимально большое отверстие, это облегчит вам будущий процесс посадки растений. После того, как все лишнее извлечено, рекомендую промыть лампочку водой, дабы избежать контакта с мелкими частицами стекла.

Затем нам нужно придать нашей лампочке устойчивость. Можно приклеить к ней ножки из чего-либо, можно приклеить саму лампочку к красивой коряге или, как в моём случае, камню. Чтобы надёжно приклеить стекло к камню, можно использовать двухкомпонентный клей или термоклей. Я использовал двухкомпонентный клей Poxipol.

Теперь нам нужно сделать дренажную систему. Дренаж — это система выведения воды через корни и почву, которая позволяет корням растений дышать при содержании большого количества влаги в земле.

Делается дренаж очень просто. В нашем случае, мы помещаем на дно небольшое количество мелких камней. Для удобства я сделал из бумаги трубку, которая также облегчит процесс наполнения лампочки песком и грунтом, а также избавит стенки от загрязнения.

Затем наполняем нашу лампочку плодородным слоем земли. Не бойтесь, если в грунт попадут корни других растений или перегной — это только сыграет вам на руку, так как обеспечит вашу систему полезными органическими веществами.

Следующий этап творческий. Здесь нужно максимально проявить все ваши художественные способности и красиво разместить собранные в лесу компоненты. Чтобы облегчить задачу посадки растений в лампочку, я использовал пинцет и стержень от шариковой ручки. В итоге у меня получилась вот такая композиция.

Завершающим этапом создания экосистемы будет добавление нескольких капель воды. Для этого можно использовать медицинский шприц. Обильно поливать растения не стоит, избыточная влага приведёт к их гибели. После того, как мы произвели полив, необходимо герметично закупорить лампочку. Тут каких-то особых правил нет, можно использовать что угодно: жёлудь, пробку от виной бутылки, пластиковую крышку, деревянную палочку и т. д., главное, чтобы в конструкцию не попадал воздух. Я использовал обычные пуговицы чёрного цвета, предварительно заклеив им отверстия для крепления на материал.

Через некоторое время на стенках лампочки начнёт образовываться конденсат из капель воды, пугаться этому не стоит, значит процесс зарождения жизни идёт как нужно. Эти капли будут периодически появляться, а затем оседать в почве, имитируя дождь.

Излишек воды будет уходить в дренаж на дно лампочки, при условии, что вы его правильно организовали. Если вы вдруг поняли, что налили слишком много воды в ваш флорариум, просто вскройте отверстие и оставьте его открытым на несколько часов, чтобы лишняя влага испарилась, затем снова герметично закупорите лампочку.

Через день после постройки своего флорариума я решил, что композицию нужно дополнить и прикрепил к моему камню-платформе ещё одну лампочку, но уже побольше. Вот так теперь стал выглядеть окончательный вариант моей экосистемы.

По такому же принципу англичанин Дэвид Латимер выращивает в бутылке традесканцию (род многолетних вечнозелёных травянистых растений семейства Коммелиновые), которое находится в закрытом пространстве уже более 40 лет и ни разу не поливалось.

В одним из своих дневников я упоминал закрытую экосистему. Некий микромир. Который существует самостоятельно.

Итак, закрытая экосистема - это система, которая не предполагает обмен веществами с внешним миром.
Это что-то наподобие Земли. Только в уменьшенном виде.
На фото - открытая система. Она берет все необходимое для своего существования из окружающей среды.
Закрытая же экосистема полностью отрезана от внешнего мира. Более того, такая система не требует никакого ухода.

Дэвид Латимер посадил в бутылку традесканцию и на протяжении 40 лет не открывал ее. За это время растение не только не погибло, а образовало собственную экосистему. Питание традесканции производилось за счет собственного перегноя. А рост растения - из-за производимого ею кислорода. Полив отсутствовал. Так как увлажнение производилось конденсатом.

Я решил сделать несколько закрытых экосистем. Именно сделать! А не купить. Ах да, такие экосистемы также можно купить.
В интернете достаточно информации о том, как можно сделать такое "чудо" природы. Расскажу как делал я.

Во-первых, для посадки требуется закрывающаяся ёмкость.
Конечно же СТЕКЛЯННАЯ. Я брал обычную банку. Либо в магазинах можно купить крутые стеклянные ёмкости округлой формы.

Во-вторых - земля. Я брал обычную землю. Без всяких там заморочек. Для дренажа у меня обычный песок с камнями.

В-третьих - растения. Самые обычные! По опыту скажу, что для закрытых систем лучше всего брать влаголюбивые. В моем случае - мох. Можно брать любые растения. Главный критерий - совместимость растений. Это может быть папоротник, хлорофитум и т.д.


В-четвертых - декор. Сами понимаете, что он не обязателен и делается по желанию. На просторах интернета пишут, что главное в выборе декора то, чтобы он не гнил. Я считаю, что будет круто, если он будет все-таки гнить. Это подчеркивает естественность такой системы.

В банку насыпаем дренаж, землю. Формируем рельеф. Дальше высаживаем растения. Для декора я взял фигурку ангела (планируется, что споры мха начнут расти на ней) и камень. Укладываем все как вам нравится, поливаем и закупориваем.

Важно, изначально не закупоривать сильно ёмкость. Так как воды в растениях может быть чрезвычайно много и они просто начнут гнить. В первый день рекомендуется не закупоривать ёмкость. Чтобы лишняя влага испарилась. В моем случае я просто закупорил все как есть.

В первую неделю в банке наблюдалось большое количество конденсата. И я был вынужден открыть ёмкость, чтобы вода немного испарилась. Растения прижились. Мох немного подрос.
В конце второй недели в банке была замечена "внеземная" жизнь - появилось два больших комара. Которые через три дня благополучно скончались.
Сегодня на фигурке ангела наблюдается кое-где рост мха. Фото, увы, не могу сделать - на стенках банки днем большой конденсат.

Вторая моя система может быть как открытой, так и закрытой.


окружающей среде, придется заняться созданием самоподдерживающейся водной экосистемы. Функционировать она будет самостоятельно без какого-либо внешнего вмешательства. К тому же это потрясающий элемент декора, который станет украшением любой комнаты.

Креветки питаются водорослями, а те в свою очередь в качестве пищи используют продукты жизнедеятельности креветок. Воду для проекта лучше всего брать из пруда или реки, поскольку в ней содержится достаточно водорослей и других полезных микроорганизмов. Экосистема будет функционировать лучше с вентиляционным отверстием. Это обеспечит газообмен с внешней средой. С надлежащей вентиляцией экосистема может функционировать на протяжении десяти лет или даже дольше!

Шаг 1. Сбор необходимых материалов.


Стеклянная банка с антикоррозийной крышкой;
- галька или песок для аквариума;
- свежая вода из пруда;
- растения для размножения и укрытия креветок.
креветки и/или улитки, хорошим выбором станут такие виды как Ghost Shrimp, Cherry Shrimp и Japanese Algae-eater.
Совет. Если прудовой воды нет, то вместо нее можно использовать обычную водопроводную, но банку с водой нужно подготовить, по крайней мере, за день раньше, чтобы вода самоочистилась. Для питания креветкам нужны или водоросли из прудовой воды или специальная основа для водорослей, прежде чем растения выработают их самостоятельно.

Шаг 2. Сверление отверстия в крышке банки для лучшей вентиляции


Нужно быть осторожным, сверление стекла может быть очень опасным. Используйте специальное сверло для стекла и очки для защиты глаз.

Шаг 3. Мытье банки


Шаг 4. Дно банки


Насыпьте на дно банки 5 см гальки, песка или гравия. Толщина слоя грунта должна быть достаточной для того, чтобы посадить в нем растения.

Шаг 5. Наполнение банки водой


Наберите из пруда или реки свежую воду.

Шаг 6. Вода в банке


Наполните банку водой наполовину.
Совет. Если воды из пруда или реки нет, тогда используйте отфильтрованную воду или обычную воду из-под крана. Однако, в этом случае положите на дно банки 1 или 2 специальные «подушечки» основы для водорослей, которые можно приобрести в любом зоомагазине. Количество основ зависит от размеров банки. В течении 24 часов держите банку открытой, чтобы весь хлор испарился.

Шаг 7. Погружение пакета с креветками и/или улитками в банку на 15-30 минут


Это позволит урегулировать температуру в пакете с температурой воды в банке, сводя к минимуму нагрузку на креветки, связанную с резким изменением температуры.

Шаг 8. Высаживание растений в грунт


Шаг 9. Помещение креветок в банку


С помощью сачка достаньте креветки из пакета и аккуратно поместите их в банку.

Шаг 10. Заполнение банки водой


Дополните банку водой из пруда, не доливая до верха примерно 2 см.

Не оставляйте слишком много воздушного пространства в банке, поскольку это приведёт к появлению белых отложений на внутренних стенках банки.

Шаг 11. Наслаждайтесь экосистемой!


Держите банку в доме при комнатной температуре и экосистема будет существовать несколько лет.
Совет. Избегайте попадания на банку прямого солнечного света, который может привести к чрезмерному размножению водорослей. Кормить креветки совсем не нужно, так как они питаются водорослями. Если не допускать попадание на банку прямых солнечных лучей, то доливать воду в нее не придется.
В случае чрезмерного размножения водорослей, добавьте в банку еще одну креветку или улиток. Со временем экосистема придет в сбалансированное состояние, в котором отходы одного организма будут использоваться в качестве пищи для другого. Это отличный способ продемонстрировать детям, как большая экосистема перерабатывает питательные вещества. Растения перерабатывают углекислый газ, который мы выдыхаем в кислород, а бактерии превращают отходы в питательную почву растений. Люди и животные, в свою очередь, вдыхают кислород и едят растения, а эти питательные вещества усваиваются в тканях.
Для тех же, кому объёма банки мало, предлагаем завести аквариум, и чем больше, тем лучше. Он позволит заняться потрясающим искусством от красоты которого просто перехватывает дыхание.

Что еще почитать