Бионика в природе. Что изучает бионика

БИОНИКА (греч. bios жизнь + [электро]ника) - наука, изучающая возможности инженерно-технического применения информационно-управляющих и конструкционноэнергетических принципов, реализованных в живых организмах. Возникновению Б. во многом способствовало появление специальных требований, предъявляемых новыми областями техники (ракетно-космическая, авиационная, мед. приборостроение, электронное машиностроение, ЭВМ и др.) к миниатюрной аппаратуре и множеству деталей, которые должны обладать минимальными размерами (объемом), весом (массой) и энергопотреблением при максимуме надежности. Таким требованиям удовлетворяют многие принципы и конструкции как целостного организма, так и отдельных органов, тканей, клеток и, наконец, биомолекул, Б. занимает пограничное положение между медико-биологическими и техническими науками. Научной биол, базой Б. служат экспериментально-теоретические основания таких наук, как физиология, особенно физиология высшей нервной деятельности, нервно-мышечная физиология, физиология органов чувств; анатомия и гистология, особенно морфология центральной и периферической нервной системы, проводящих путей; биофизика, особенно биофизика возбуждения, биоэнергетика, биомеханика, а также биохимия, зоология, ботаника, общая биология и кибернетика. Физико-технической научной базой Б. служат техническая кибернетика, молекулярная физика и физика твердого тела, радиоэлектроника, микроэлектроника, механика, гидравлика, теория автоматического регулирования. Термин «бионика» был предложен Стиллом (D. Still) в 1958 г. Официальное появление Б. как науки относят к концу 1960 г., когда в Дайтоне (США) состоялся первый симпозиум по бионике, который прошел под лозунгом: «живые прототипы - ключ к новой технике».

Уже к началу 1964 г. только но одной из проблем, вошедших в круг задач новой науки,- моделированию процессов распознавания образов (см.) - было опубликовано более 500 работ.

Возникновение Б. неразрывно связано с появлением новых идей об общности процессов управления в машинах, живых организмах и обществе, возникших в науке об управлении в сороковых годах нашего столетия и оформившихся в результате работ Н. Винера в виде новой науки об управлений и связи - кибернетики (см.). Такой подход имел определенное значение как для техники, так и для мед. и биол, наук и привлек к себе не только инженеров и математиков, но и биологов. В результате возникло два новых научных направления: 1) биокибернетика, цель к-рой - изучить информационно-управляющие процессы в живых организмах, используя методы кибернетики, и 2) бионика, цель к-рой - изучить возможности применения информационно-энергетических свойств биол, объектов, в т. ч. конструкций и схем биоинформационных систем в технике, с целью усовершенствования существующих или создания новых, более совершенных технических систем.

В большинстве ведущих исследований биокибернетический и бионический подходы бывают обычно настолько тесно связаны, что рассмотрение каждого из них в отдельности теряет смысл, и они выступают как неразрывные части некоего единого процесса познания, в к-ром бионический подход возникает как результат определенных успехов биокибернетического подхода.

В свою очередь успех биокибернетического подхода, напр, метод «черного ящика», часто бывает обусловлен бионической, т. е. конструкционно-энергетической технически осмысленной постановкой задачи в части реализации общих гипотез кибернетики.

Основные направления бионики

Свойства биологических систем (см. Биологическая система) представляют интерес для техники. Во-первых, в плане заимствования информационно-управляющих способов живых организмов при реакциях на изменения окружающей среды, для выработки соответствующих поведенческих актов, являющихся ответом на эти изменения. Во-вторых, в плане заимствования структурных и механических свойств биол, систем. В-третьих, представляет интерес применение хим. и энергетических процессов, происходящих с высоким кпд в этих системах. Первый аспект интереса к биол, системам открывает новые возможности в изыскании и технической реализации новых принципов и устройств переработки информации, создании новых элементов систем автоматики и вычислительных устройств; второй - в разработке новых типов конструкций технических устройств, связанных конструкциями и с механическими передвижениями; третий - в освоении новых технологических процессов и аппаратов хим. производства и разработке новых методов превращения хим. энергии в электрическую.

Известно, что способность живых организмов весьма гибко реагировать на изменения окружающей среды связана с деятельностью анализаторов - зрительного, слухового, обонятельного, осязательного, вкусового. Многие задачи, успешно решаемые анализаторами живых организмов, напр, чтение рукописных текстов и восприятие речи человеком, весьма тонкое распознавание сигналов, которыми различные виды живых организмов обмениваются между собой и т. д., до сих пор еще далеки от решения их с помощью технических устройств.

Одной из загадочных особенностей многих птиц, рыб и морских животных являются их весьма совершенные навигационные способности. При сезонных миграциях эти животные преодолевают огромные расстояния, с высокой, пока необъяснимой точностью отыскивая прежние места обитания. Принципы получения и переработки информации в их навигационных «устройствах», несомненно, представляют интерес для техники.

Весьма совершенными являются пассивные и активные анализаторы (локаторы), имеющиеся у дельфинов, китов, летучих мышей, некоторых видов птиц, бабочек и других животных. Для ориентировки в пространстве летучие мыши излучают короткие импульсы ультразвуковой частоты и производят оценку времени возвращения эха. Локаторы летучих мышей настолько совершенны, что они уверенно маневрируют в темноте между рядами натянутой проволоки и другими препятствиями. Многочисленные эксперименты, проведенные с летучими мышами, показывают, что в том случае, когда в процессе активного лоцирования масса летучих мышей одновременно издает «крики» (ультразвуковые сигналы), эти сигналы, по-видимому, не заглушают друг друга, а ультразвуковой шум значительной силы почти не влияет на их поведение. Эти свойства природных локаторов могут помочь в решении проблемы устранения шумовых сигналов (как естественных, так и искусственно создаваемых), при конструировании новых видов технических локаторов.

Некоторые породы рыб, живущие в условиях полного отсутствия видимости, обнаруживают добычу и ориентируются в пространстве при помощи электрической системы, к-рая представляет собой по существу локатор особого типа. Скат создает вокруг своего тела электрическое поле, к-рое изменяется при его перемещении в пространстве. По изменениям этого поля, воспринимаемым специальными рецепторами, рыба ориентируется и получает возможность находить и преследовать добычу. Исследование такого электрического локатора позволит разработать новые анализаторные устройства, напр, для защиты от подводных лодок, ориентирования их под водой.

Некоторые животные обладают способностью заранее чувствовать приближение опасных для них изменений окружающей среды. Так, медузы за несколько часов предчувствуют приближение шторма, отдельные виды рыб предчувствуют землетрясение. Изучение этих свойств животных поможет создать приборы, выполняющие аналогичные функции.

Биологические системы располагают большим количеством различных датчиков-анализаторов - преобразователей энергии внешних стимулов (тепловой, световой, механической) в энергию нервных импульсов. По миниатюрности. и чувствительности эти анализаторы пока далеко превосходят свои технические аналоги. Так, органы, расположенные на ножках некоторых насекомых, позволяют улавливать смещения в доли микрона. Тепловые рецепторы гремучей змеи регистрируют изменение температуры на 0,001°. В биол, системах имеются также датчики принципиально нового типа, такие как датчики вкусовых и обонятельных сигналов, способные улавливать единичные молекулы. Обонятельный аппарат угря, напр., способен уловить присутствие единичных молекул алкоголя, не определяемых высокочувствительными методами химического анализа.

Технические информационно-управляющие системы по чувствительности и часто по быстродействию превосходят биол, системы, но уступают последним по габаритам, потребляемой мощности и надежности. Один нейрон занимает объем 10 -8 -10 -7 см 3 , объем мозга человека составляет всего 1000 см 3 , мозг потребляет мощность ок. 20 вт и работает, не выходя из строя, в среднем ок. 585 тыс. час.

Мощность, потребляемая современными вычислительными машинами, составляет десятки киловатт, а срок безотказной работы самой высококачественной аппаратуры исчисляется только сотнями часов. Даже если ориентироваться на самые прогрессивные разработки, обеспечивающие объемную плотность 10 3 -10 4 элементов в 1 см 3 и потребление энергии 1 мвт/элемент, то и в этом случае объемная плотность и экономичность биол, систем окажутся на несколько порядков более высокими. Это позволяет надеяться на разработку новых принципов дальнейшей миниатюризации аппаратуры систем управления и вычислительных машин.

Перечисленные свойства живых организмов составляют предмет исследования информационно-анализаторного направления бионики.

Вторым аспектом Б. является изучение возможностей технического применения структуры и конструкций биол, систем, изучение механических, энергетических и хим. процессов, происходящих в них.

В строительных консольных конструкциях, освоенных человеком, отношение высоты к наибольшему диаметру не превосходит 20-30, в то же время в природе существуют конструкции, у которых это отношение значительно выше 30 (ствол эвкалипта, пальмы и др.).

Изучение конструкций туловища рыб и морских животных в плане гидродинамических механизмов их перемещения в воде может дать много полезного для кораблестроения. Рыбы и морские животные весьма экономно расходуют энергию и при этом способны развивать высокие скорости. Так, скорость дельфина достигает 12-16 м/сек, скорость летучих рыб - 18 м/сек (т. е. 65 км/час, что равно скорости курьерского поезда), а скорость тунца - более 30 м/сек.

Третьим важным аспектом Б. является изучение биохим, процессов, происходящих в живой природе, с точки зрения кпд, которые могут служить образцом для разработки новых технологических процессов. В этом аспекте еще только начинаются исследования особенностей процессов тепломассообмена и термодинамики живых организмов популяций и сообществ. В качестве примера можно привести осуществляемые растениями и микроорганизмами с высоким кпд процессы фотосинтеза, синтеза уксусной к-ты, производство полноценного белка, переработку древесины в жиры и белки, осуществляемую микроорганизмами в кишечнике термитов и т. п. Интересными проблемами являются также изучение механизмов работы биохимических источников электроэнергии; исследование биохим, и биоэнергетических процессов применительно к технике процессов и аппаратов в хим. машиностроении.

Все три рассмотренных аспекта Б. показывают, насколько широки возможности постановки бионических исследований.

Направление исследования информационно-анализирующих устройств биообъектов, к-рое в наст, время развивается наиболее интенсивно, подразделяется в свою очередь на ряд самостоятельных направлений, предмет которых составляют:

Общие закономерности способов и устройств переработки информации в нервной системе; сюда относятся моделирование процессов в нейроне, исследование методов кодирования информации на разных уровнях, исследование моделей нейронных сетей;

Информационные способы и устройства в биоанализаторах и процессы распознавания образов; сюда относятся исследования механизмов работы рецепторов, построение моделей различных анализаторных систем и разработка на их основе алгоритмов распознавания образов, исследование способов кодирования при обмене информацией между живыми организмами. Кроме того, для техники представляют интерес механизмы обучения и адаптации, памяти, обеспечения надежности, компенсаторные функции живых организмов, а также механизмы, управляющие регенерацией органов в плане создания самовосстанавливающихся технических устройств;

Системы регулирования, управляющие деятельностью отдельных автономных подсистем высших организмов, которые представляют собой отдельные гомеостатические контуры, напр. система кровообращения, система дыхания, глазодвигательная система, с учетом особенностей реализованного принципа иерархичности в биол, системах, дающих большие возможности для заимствования в технических разработках.

Следует отметить, что успех бионических исследований не может быть обеспечен при простом механическом перенесении в технику схем, выработанных природой.

В природе можно найти много примеров решений и свойств живых организмов, совершенно неудовлетворяющих технику. Достаточно упомянуть только, что нормальная жизнедеятельность биол, систем возможна в узких пределах температуры (0-70°) и давления (0,7- 3 кг/см 2), а быстродействие элементов нервной системы значительно ниже быстродействия технических элементов. Время, необходимое для перевода нейрона из невозбужденного состояния в возбужденное, составляет 10 -2 -10 -1 сек., тогда как для технических элементов оно достигает 10 -7 -10 -8 сек. В силу этого основное внимание обращается на изучение и освоение принципов работы элементов и систем живых организмов, что позволит за счет реализации этих принципов на элементах другой физической природы получить системы более совершенные, чем те, которые созданы в процессе эволюции в живых организмах.

Методы исследования бионики. В основе большинства бионических и биокибернетических исследований, особенно в основе информационного их направления, лежит метод моделирования. Термин «модель в бионике» нередко трактуется очень широко - от физ. устройства, воспроизводящего функции моделируемого объекта и математической модели (либо программы на ЭВМ), до суммы логических представлений, описывающих объект, т. е. согласованной системы фактов и гипотез о сущности изучаемой системы (см. Моделирование).

Моделирование механизмов работы тех или иных отделов биол, системы обычно разбивается на этапы: на первом этапе проводится изучение, систематизация и сопоставление существующих физиол, данных - результатов морфол., электрофизиол. и психофизиол, исследований и получение в случае необходимости новых данных об объекте. На втором этапе- разработка на основе проведенного анализа физиол, данных кибернетической гипотезы о работе исследуемой биол, системы, т. е. такой гипотезы, к-рая включает в себя широкий комплекс технических и математических сведений, используемых современной наукой об управлении; наконец, на последнем этапе осуществляется проверка разработанной гипотезы, к-рая может производиться в двух направлениях: во-первых, посредством расчетов на вычислительных машинах, физических или математических, во-вторых, проверка соответствия гипотезы объективной реальности посредством физиол. эксперимента.

Моделирование биол, систем в кибернетике и Б. может проводиться посредством различных методов. В обобщенных методах кибернетики, важных для Б., ставится задача получить алгоритм, описывающий работу моделируемого объекта, причем не требуется сходства структуры модели со структурой объекта. Этот метод представляет собой метод функционального моделирования, или метод «черного ящика». Метод функциональною моделирования основывается на психофизиологических и поведенческих данных об объекте. Применительно к задачам Б. метод «черного ящика» позволяет получить ряд важных данных, позволяющих выбрать тот или иной биол, принцип построения технической системы (дискретной, аналоговой). В другом, не менее важном для Б. дискретноструктурном методе моделируются принципы и сущность информационно-управляющих нейронных механизмов того или иного отдела мозга. В этом случае требуется выяснять как дискретную структуру моделируемого объекта, так и характер взаимосвязей между его элементами (множествами). В отличие от первого метода, этот метод использует комплекс физиол, данных, полученных психофизиологами, морфологами и электрофизиологами.

Основные результаты бионики

Одним из первых результатов Б., внедренных в технику в области заимствования принципов биоанализаторов, явилась разработка гиротрона - прибора, применяемого вместо гироскопа для стабилизации летательных аппаратов. Изучение некоторых насекомых (бабочек, жуков) показало, что они имеют булавовидные усики, которые во время полета колеблются в горизонтальной плоскости. При отклонении тела насекомого концы усиков продолжают колебаться в той же плоскости, что вызывает у основания усиков механические напряжения, воздействующие на находящиеся здесь нервные клетки. От них сигналы по нервным волокнам поступают в центральные отделы нервной системы, которые вырабатывают соответствующие ответные сигналы для управления органами тела насекомого, восстанавливающими правильное положение его в полете. Принцип работы этого биоаналнзатора применен в техническом устройстве - гиротроне, представляющем собой камертон, ножки к-рого приводятся в колебательное движение электромагнитом, питаемым переменным током. При повороте держателя, на к-ром укреплен камертон, у основания ножек возникает механический момент. Датчик, реагирующий на него, посылает сигнал, пропорциональный углу поворота держателя. Гиротроны применяются в летательных аппаратах, ведется дальнейшая работа по их совершенствованию: увеличению чувствительности, срока службы, уменьшению габаритов.

Другим примером является построение измерителя земной скорости для самолета, использующего принцип работы фасеточного глаза насекомых (пчелы). Прибор состоит из приемников, расположенных у основания двух трубок, разведенных на заданный угол в вертикальной плоскости. Для определения скорости самолета относительно земли производится фиксация определенной точки земной поверхности сначала в одном, потом в другом приемнике. Зная промежуток времени между появлением выбранной точки в первом и во втором приемниках и высоту самолета над поверхностью земли, легко определить скорость.

Наблюдения за поведением пчел позволили выдвинуть гипотезу об ориентировке некоторых видов птиц и насекомых по поляризованному излучению солнца, использующую тот факт, что световые лучи, поступающие от солнца, поляризованы по-разному при расположении солнца на различной высоте над горизонтом. Эти исследования привели к созданию солнечного компаса, дающего возможность ориентироваться но солнцу при наличии облачности. Ряд приборов, необходимых для устройств самонаведения и локации, предложен в результате изучения механизмов функционирования глаза лягушки. На основе исследования свойств некоторых морских организмов улавливать инфразвуки построены приборы для сигнализации о приближении шторма.

Применение в технике нашли также конструкционно-энергетические принципы, заимствованные у биообъектов. Так, использование форм обводов китообразных для строительства кораблей позволило получить выигрыш в мощности силовых установок до 40%. Другим примером является способ передвижения пингвинов по снегу, он использован для постройки нового вездехода для полярных районов.

Интересным результатом является попытка использования некоторых видов микроорганизмов для создания электрических источников тока.

Наиболее существенные результаты информационного направления Б. состоят, во-первых, в разработке моделей одиночных нервных клеток, моделей участков нейронных сетей и целых отделов нервной системы - анализаторов и, во-вторых, в разработке на базе этих моделей обучающихся машин и алгоритмов для распознавания образов. Разработано несколько сот моделей нейронов, различающихся по количеству и сложности воспроизводимых свойств нейрона. Некоторые разработки представляют собой по существу сложные адаптивные элементы нового типа, созданные на базе представлений о нейроне, и предназначены для создания распознающих обучающихся устройств. Успехи, достигнутые при разработке моделей анализаторных отделов мозга, связаны с формулировкой известного в физиологии принципа латерального тормозного взаимодействия между элементами проекционных отделов нервной системы и разработкой теории детекторов как основного механизма работы анализаторов. Согласно этой теории процесс восприятия того или иного раздражителя является результатом выделения некоторых простых признаков этого раздражителя посредством набора специально организованных ансамблей нейронов - детекторов. Напр., при анализе зрительного изображения обнаружены детекторы границы темного и светлого участков, детекторы кривизны, детекторы прямых линий определенного направления, детекторы перекреста прямых линий и т. п. В ходе эволюции у животных функции детекторов усложняются, появляются детекторы движения с определенной скоростью, детекторы движения в определенном направлении. На базе теории детекторов разработаны модельные представления о работе зрительного и слухового анализаторов, объясняющие ряд свойств слухового и зрительного восприятия.

Созданные на базе бионических исследований распознающие и обучающиеся устройства, конечно, еще весьма несовершенны, и создание их должно рассматриваться как первые шаги в этой области. Тем не менее уже созданы устройства для распознавания простейших рисунков, для распознавания ограниченного набора слов (ок. 300), разработаны адаптивные автопилоты и самонастраивающиеся фильтры для выделения на фоне шумов сигнала произвольной формы. Создание совершенных обучающихся распознающих устройств будет иметь большое значение не только для техники, но и для биологии и медицины и особенно для медицинской техники, биотелеметрии, биофизики.

Такие устройства найдут применение в цитологии, гистологии, микробиологии, рентгенологии и других областях биологии и медицины.

В середине 70-х годов в связи с развитием техники ОКГ (см. Оптический квантовый генератор) и развитием голографии (см.) наблюдается пересмотр роли кибернетики и Б. в развитии технических информационно-анализирующих систем.

Научно-исследовательские учреждения, в которых проводятся исследования по бионике: СССР - государственные университеты: Днепропетровский, Вильнюсский, Ростовский, Ленинградский, Московский; институты биофизики (Москва), проблем управления (Москва), мозга (Москва), радиоэлектроники (Харьков), кибернетики (Киев), автоматики и электрометрии СО АН СССР; США - университеты: Станфордский, Гарвардский, Колумбийский, Иллинойсский, Калифорнийский; Массачусетский технологический институт; Англия - университеты: Бирмингемский, Кельтский, Кембриджский; ФРГ - Институт Макса Планка; ГДР - Высшая техническая школа (Ильменау), Институт кибернетики и информационных процессов; Польша - Институт прикладной кибернетики, Политехнический институт (Варшава); Болгария - Институт технической кибернетики; Чехословакия - Институт теории информации и автоматизации. Работы по Б. обсуждаются на регулярно созываемых конференциях. В СССР проводятся: всесоюзные конференции по бионике (Москва), всесоюзные конференции по нейрокибернетике (Ростов-на-Дону); в США: национальные симпозиумы по бионике; в ФРГ: конгрессы по кибернетике; международные конгрессы: по кибернетике (Намюр), но медицинской кибернетике (Амстердам), по биокибернетике (Лейпциг), по автоматическому регулированию (ИФАК).

Общепринятых учебных программ для подготовки специалистов в области Б. не существует, однако в ряде университетов и вузов организованы спецкурсы и проводятся студенческие научно-исследовательские работы. К их числу относятся Днепропетровский, Вильнюсский, Ростовский, Ленинградский, Московский университеты; Московский физико-технический институт, 1-й Московский медицинский институт, Ленинградский политехнический институт.

Библиография: Бионика, под ред. А. И. Берга и др., М., 1965; Бионика, Библиографический указатель отечественной и иностранной литературы 1958 - 1968 гг., сост. Т. Н. Анисимова, М., 1971; Бонгард М. М. Проблема узнавания, М., 1967; Винер Н. Кибернетика и общество, пер. с англ., М., 1958; Глезер В. Д. Механизмы опознавания зрительных образов, М.- Л., 1966, библиогр.; Дейч С. Модели нервной системы, пер. с англ., М., 1970, библиогр.; Жерарден Л. Бионика, пер. с франц., М., 1971; Мил-сум Д. Анализ биологических систем управления, пер. с англ., М., 1968, библиогр.; П о з и н Н. В. Моделирование нейронных структур, М., 1970, библиогр.

И. А. Любинский.

Бионика, появившаяся в научных кругах во второй половине двадцатого века? Бионика содержит в своей основе материалы наблюдения за естественными природными системами для создания на их базе современных технологий.

Слово "бионика" в переводе с английского означает "знание о живых организмах". Ее основная задача (как было сказано ранее) - это выявление закономерностей живой природы и применение их в системе человеческой деятельности. Впервые проблемы бионики, ее цели и функции были определены на дайтонском симпозиуме в США. Тогда в 1960 году смело было выдвинуто утверждение о том, что только биологические механизмы могут быть истинными прототипами технического развития.

Основные проблемы и задачи бионики

  1. Наблюдение и изучение функций и особенностей отдельных систем и органов живых организмов (например, нервной системы, сердца или кожи) для использования полученных знаний в качестве базиса для создания новейших технических достижений: средств передвижения, вычислений и т.д.
  2. Изучение биоэнергетического потенциала живых организмов для создания на их основе двигателей, способных действовать подобно мышцам, чтобы с помощью этого экономить электроэнергию.
  3. Исследование биохимических синтезирующих процессов для развития отраслей химии для получения новых моющих средств и лекарственных препаратов.

Связь бионики с другими областями человеческих знаний

«Бионика считается связующим звеном, проложенным между множеством технических (электронная, транспортная, информационные технологии) и естественных наук (медициной, биологией, химией)».

Специалисты утверждают, что объединение в определенное единство совокупности имеющихся знаний с целью их рационального практического применения – это наиболее необходимый процесс для современного мира. Бионика появилась тогда, когда специализация отдельных отраслей знания усилилась, лишая науку жизненно необходимого единства.

Так бионика в биологии представляет собой необходимый компонент, позволяющий применять полученные знания в их качественном объединении с математикой, техникой и химией. Установление аналогичных связей между информационными, техническими и природными ресурсами – неотъемлемая часть бионического исследования.

Если в своем широком понимании бионика – средство «заимствования» у природы гениальных идей для новейших научных разработок, то в более узком смысле можно говорить о данной науке как о теснейшей связи биологии с аэронавтикой, кибернетикой, материаловедением, строительством, бизнесом, медициной, химией, архитектурой и даже искусством. Специалист-бионик должен обладать чрезмерной наблюдательностью, а также аналитическим складом ума для способности адекватного сопоставления имеющегося и вновь обновляющегося посредством эволюции материала и технических возможностей, предоставленных развитием человечества.

Продолжая беседу об узком значении бионики, можно говорить о такой ее задаче, как разработка новейших методов добычи природных ресурсов и полезных ископаемых для использования их в производстве.

Несмотря на то, что бионика – это наука о том, как лучше и рациональнее использовать то, что дает нам природа, одной из ее основополагающих функций выступает защита природного материала как неисчерпаемого источника ресурсов и идеи для непрерывного прогресса общества. Для этого специалистами-биониками используются три основных подхода.

  1. Функциональный математический программный подход (изучение схемы происходящего процесса, его структуры, истоков и результатов). Данный подход дает возможность конструирования новой модели с помощью уже имеющихся средств.
  2. Физико-химический подход (изучение биохимических процессов). Этот подход предоставляет исследователям возможность синтезирования новых веществ с помощью изученных механизмов.
  3. Прямое применение биологических систем в структуре технологий, называемое обратным моделированием. Если в предыдущих подходах речь шла об использовании биологического материала для создания новых технических средств, то здесь мы можем говорить о решении задач и вопросов техники с помощью поиска ответов и необходимых ресурсов в биологической среде.

Итак, на вопрос о том, что изучает наука бионика, лучше всего ответить следующим образом. Бионика – это поиск путей, средств и возможностей связи биологических аспектов существования и технического прогресса с целью увеличения научного прогресса и одновременного сохранения существующих природных ресурсов.

Создание модели в бионике – это половина дела. Для решения конкретной практической задачи необходима не только проверка наличия интересующих практику свойств модели, но и разработка методов расчета заранее заданных технических характеристик устройства, разработка методов синтеза, обеспечивающих достижения требуемых в задаче показателей.

И поэтому многие бионические модели, до того как получают техническое воплощение, начинают свою жизнь на компьютере. Строится математическое описание модели. По ней составляется компьютерная программа – бионическая модель . На такой компьютерной модели можно за короткое время обработать различные параметры и устранить конструктивные недостатки.

Именно так, на основе программного моделирования , как правило, проводят анализ динамики функционирования модели; что же касается специального технического построения модели, то такие работы являются, несомненно, важными, но их целевая нагрузка другая. Главное в них – изыскание лучшей основы, на которой эффективнее и точнее всего можно воссоздать необходимые свойства модели. Накопленный в бионике практический опыт моделирования чрезвычайно сложных систем имеет общенаучное значение. Огромное число ее эвристических методов, совершенно необходимых в работах такого рода, уже сейчас получило широкое распространение для решения важных задач экспериментальной и технической физики, экономических задач, задач конструирования многоступенчатых разветвленных систем связи и т.п.

Сегодня бионика имеет несколько направлений.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Яркий пример архитектурно-строительной бионики - полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чем же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб - одним из последних достижений инженерной мысли. Обе конструкции полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия стеблей - кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой. Такое изобретение ХХ века, как застежки «молния» и «липучки», было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 года начали исследования «динамических структур», а в 1991 году организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».

Башня-город будет иметь форму кипариса высотой 1128 м с обхватом у основания 133 на 100 м., а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей. Между кварталами - перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты - аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить еще несколько таких зданий-городов.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

Основными направлениями нейробионики являются изучение нервной системы человека и животных и моделирование нервных клеток-нейронов и нейронных сетей. Это дает возможность совершенствовать и развивать электронную и вычислительную технику.

Нервная система живых организмов имеет ряд преимуществ перед самыми современными аналогами, изобретенными человеком:

    Гибкое восприятие внешней информации, независимо от формы, в которой она поступает (почерк, шрифт, цвет, тембр и т. д.).

    Высокая надежность: технические системы выходят из строя при поломке одной или нескольких деталей, а мозг сохраняет работоспособность при гибели даже нескольких сотен тысяч клеток.

    Миниатюрность. Например, транзисторное устройство с таким же числом элементов, как головной мозг человека, занимало бы объем около 1000 м3, тогда как наш мозг занимает объем 1,5 дм 3 .

    Экономичность потребления энергии - разница просто очевидна.

    Высокая степень самоорганизации - быстрое приспособление к новым ситуациям, к изменению программ деятельности.

Эйфелева башня и берцовая кость

К 100-й годовщине Великой французской революции в Париже была организована всемирная выставка. На территории этой выставки планировалось воздвигнуть башню, которая символизировала бы и величие Французской революции, и новейшие достижения техники. На конкурс поступило более 700 проектов, лучшим был признан проект инженера-мостовика Александра Гюстава Эйфеля. В конце ХIХ столетия башня, названная именем своего создателя, поразила весь мир ажурностью и красотой. 300-метровая башня стала своеобразным символом Парижа. Ходили слухи, будто бы построена башня по чертежам неизвестного арабского ученого. И лишь спустя более чем полстолетия биологи и инженеры сделали неожиданное открытие: конструкция Эйфелевой башни в точности повторяет строение большой берцовой кости, легко выдерживающей тяжесть человеческого тела. Совпадают даже углы между несущими поверхностями. Это еще один показательный пример бионики в действии.

Лозунг бионики: «Природа знает лучше». Что же это за наука такая? Уже само название и такой девиз дают нам понять, что бионика связана с природой. Многие из нас ежедневно сталкиваются с элементами и результатами деятельности науки бионики, даже не подозревая об этом.

Вы слышали о такой науке, как бионика?

Биология - популярное знание, с которым нас знакомят ещё в школе. Почему-то многие считают, что бионика - один из подразделов биологии. На самом деле это утверждение не совсем точное. Действительно, в узком смысле слова бионика - это наука, изучающая живые организмы. Но чаще всего мы привыкли ассоциировать с этим учением нечто другое. Прикладная бионика - наука, которая сочетает в себе биологию и технику.

Предмет и объект бионических исследований

Что изучает бионика? Чтобы ответить на этот вопрос, нужно рассмотреть структурное деление самого учения.

Биологическая бионика исследует природу такой, какая она есть, без попытки вмешательства. Объектом её изучения являются процессы, происходящие внутри биологических систем.

Теоретическая бионика занимается изучением тех принципов, которые были замечены в природе, и на их основе создаёт теоретическую модель, в дальнейшем применяемую в технологиях.

Практическая (техническая) бионика - это применение теоретических моделей на практике. Так сказать, практическое внедрение природы в технический мир.

Откуда всё начиналось?

Отцом бионики называют великого Леонардо да Винчи. В записях этого гения можно найти первые попытки технического воплощения природных механизмов. Чертежи да Винчи иллюстрируют его стремление создать летательный аппарат, способный двигать крыльями, как при полёте птицы. В своё время такие идеи были слишком дерзкими, чтобы стать востребованными. Они заставили обратить на себя внимание значительно позже.

Первым, кто стал применять принципы бионики в архитектуре, был Антони Гауди-и-Курнет. Его имя прочно впечатано в историю этой науки. Архитектурные сооружения по проектам великого Гауди впечатляли в момент их сооружения, и такой же восторг они вызывают через много лет у современных наблюдателей.

Следующим, кто поддержал идею симбиоза природы и технологий, стал Под его руководством началось широкое применение бионических принципов в проектировании зданий.

Утверждение бионики как самостоятельной науки произошло лишь в 1960 году на научном симпозиуме в Дайтоне.

Развитие компьютерной техники и математического моделирования позволяют современным архитекторам намного быстрее и с большей точностью воплощать в архитектуре и других отраслях подсказки природы.

Природные прототипы технических изобретений

Самым простым примером проявления науки бионики является изобретение шарниров. Всем знакомое крепление, основанное на принципе вращения одной части конструкции вокруг другой. Такой принцип используют морские ракушки, для того чтобы управлять двумя своими створками и по надобности открывать их или закрывать. Тихоокеанские сердцевидки-великаны достигают размеров 15-20 см. Шарнирный принцип в соединении их ракушек хорошо просматривается невооружённым взглядом. Мелкие представители этого вида применяют такой же способ фиксации створок.

В быту мы часто используем разнообразные пинцеты. Природным аналогом такого прибора становится острый и клещеобразный клюв веретенника. Эти птицы применяют тонкий клюв, втыкая его в мягкую почву и доставая оттуда мелких жуков, червяков и прочее.

Многие современные приборы и приспособления оснащены присосками. Например, их используют для усовершенствования конструкций ножек различных кухонных приспособлений, чтобы избежать их скольжения во время работы. Также присосками оснащают специальную обувь мойщиков окон высотных зданий для обеспечения их безопасной фиксации. Это нехитрое приспособление тоже позаимствовано у природы. Квакша, имея на ногах присоски, необычайно ловко держится на гладких и скользких листьях растений, а осьминогу они необходимы для тесного контакта со своими жертвами.

Можно найти множество таких примеров. Бионика - это как раз та наука, которая помогает человеку заимствовать у природы технические решения для своих изобретений.

Кто первый - природа или люди?

Иногда случается, что то или иное изобретение человечества уже давно «запатентовано» природой. То есть изобретатели, создавая нечто, не копируют, а придумывают сами технологию или принцип работы, а позже оказывается, что в естественной природе это уже давно существует, и можно было просто подсмотреть и перенять.

Так произошло с обычной липучей застёжкой, которая используется человеком для застегивания одежды. Было доказано, что в для сцепления тонких бородочек между собой тоже применяются крючочки, подобно тем, которые есть на застёжке-липучке.

В строении фабричных труб наблюдается аналогия с полыми стеблями злаков. Продольная арматура, используемая в трубах, сходна со склеренхимными тяжами в стебле. Стальные кольца жёсткости - междоузлия. Тонкая кожица с внешней стороны стебля - это аналог спиральной арматуры в строении труб. Несмотря на колоссальное сходство структуры, учёные самостоятельно изобрели именно такой метод постройки фабричных труб, а уже позже увидели тождество такого строения с природными элементами.

Бионика и медицина

Применение бионики в медицине даёт возможность спасти жизнь многим пациентам. Не прекращаясь, ведутся работы по созданию искусственных органов, способных функционировать в симбиозе с организмом человека.

Первым посчастливилось испытать датчанину Деннису Аабо. Он потерял половину руки, но сейчас имеет возможность воспринимать предметы на ощупь с помощью изобретения медиков. Его протез подключён к нервным окончаниям пострадавшей конечности. Сенсоры искусственных пальцев способны собирать информацию о прикосновении к предметам и передавать её в мозг. Конструкция на данный момент ещё не доработана, она очень громоздкая, что затрудняет её использование в быту, но уже сейчас можно назвать такую технологию настоящим открытием.

Все исследования в данном направлении полностью основываются на копировании природных процессов и механизмов и их техническом исполнении. Это и есть медицинская бионика. Отзывы учёных гласят, что в скором времени их труды дадут возможность менять износившиеся живые органы человека и вместо них использовать механические прототипы. Это действительно станет величайшим прорывом в медицине.

Бионика в архитектуре

Архитектурно-строительная бионика - особая отрасль бионической науки, задачей которой становится органическое воссоединение архитектуры и природы. В последнее время всё чаще при проектировании современных конструкций обращаются к бионическим принципам, позаимствованным у живых организмов.

Сегодня архитектурная бионика стала отдельным архитектурным стилем. Рождалась она с простого копирования форм, а сейчас задачей этой науки стало перенять принципы, организационные особенности и технически их воплотить.

Иногда такой архитектурный стиль называют экостилем. Всё потому, что основные правила бионики - это:

  • поиск оптимальных решений;
  • принцип экономии материалов;
  • принцип максимальной экологичности;
  • принцип экономии энергии.

Как видите, бионика в архитектуре - это не только впечатляющие формы, но и прогрессивные технологии, позволяющие создавать сооружение, отвечающие современным требованиям.

Характеристики архитектурных бионических строений

Опираясь на былой опыт в архитектуре и строительстве, можно сказать, что все сооружения человека непрочны и недолговечны, если они не используют законы природы. Бионические здания, помимо удивительных форм и смелых архитектурных решений, обладают стойкостью, способностью выдерживать неблагоприятные природные явления и катаклизмы.

В экстерьере зданий, построенных в этом стиле, могут просматриваться элементы рельефов, форм, контуров, умело скопированные инженерами-проектировщиками с живых, природных объектов и виртуозно воплощенные архитекторами-строителями.

Если вдруг при созерцании архитектурного объекта покажется, что вы смотрите на произведение искусства, с большой вероятностью перед вами строение в стиле бионика. Примеры таких конструкций можно увидеть практически во всех столицах стран и больших технологически развитых городах мира.

Конструкция нового тысячелетия

Ещё в 90-х годах испанской командой архитекторов был создан проект здания, основывающийся на совершенно новой концепции. Это 300-этажное строение, высота которого будет превышать 1200 м. Задумано, что передвижение по этой башне будет происходить с помощью четырёх сотен вертикальных и горизонтальных лифтов, скорость которых - 15 м/с. Страной, согласившейся спонсировать данный проект, оказался Китай. Для строительства был выбран самый густонаселённый город - Шанхай. Воплощение проекта позволит решить демографическую проблему региона.

Башня будет иметь полностью бионическую структуру. Архитекторы считают, что только это сможет обеспечить прочность и долговечность конструкции. Прототипом строения является дерево кипарис. Архитектурная композиция будет иметь не только цилиндрическую форму, похожую на ствол дерева, но и «корни» — новый вид бионического фундамента.

Наружное покрытие здания - это пластичный и воздухопроницаемый материал, имитирующий кору дерева. Система кондиционирования этого вертикального города будет аналогом теплорегулирующей функции кожи.

По прогнозам учёных и архитекторов, такое здание не останется единственным в своём роде. После успешного воплощения количество бионических строений в архитектуре планеты будет только увеличиваться.

Бионические здания вокруг нас

В каких известных творениях была использована наука бионика? Примеры таких сооружений несложно отыскать. Взять хотя бы процесс создания Эйфелевой башни. Долгое время ходили слухи, что этот 300-метровый символ Франции построен по чертежам неизвестного арабского инженера. Позже была выявлена полная её аналогия со строением большой берцовой кости человека.

Кроме башни Эйфеля во всём мире можно найти множество примеров бионических сооружений:

  • возводилась по аналогии с цветком лотоса.
  • Пекинский национальный оперный театр - имитация водяной капли.
  • Плавательный комплекс в Пекине. Внешне повторяет кристаллическую структуру решётки воды. Удивительное дизайнерское решение совмещает и полезную возможность конструкции аккумулировать энергию солнца и в дальнейшем использовать её для питания всех электроприборов, работающих в здании.
  • Небоскрёб "Аква" внешне похож на поток падающей воды. Находится в Чикаго.
  • Дом основателя архитектурной бионики Антонио Гауди - это одно из первых бионических сооружений. До сегодняшнего дня он сохранил свою эстетическую ценность и остаётся одним из самых популярных туристических объектов в Барселоне.

Знания, необходимые каждому

Подводя итоги, можно смело заявить: всё, что изучает бионика, актуально и нужно для развития современного общества. Каждый должен ознакомиться с научными принципами бионики. Без этой науки невозможно представить технический прогресс во многих сферах деятельности человека. Бионика - это наше будущее в полной гармонии с природой.

Что еще почитать