Ген, геном, хромосома: определение, структура, функции. Значение слова ген

В повести братьев Стругацких «Хромая судьба» есть такой эпизод: неприятный персонаж с пафосом диктует секретарше: «...с абстракционизмом в литературе мы должны бороться и будем бороться так же непримиримо, как с абстракционизмом в живописи, в скульптуре, в архитектуре...» «...И в животноводстве!» – завершает этот список герой повести.

Трудно сказать, можно ли найти абстракционизм в животноводстве, но в современной генетике его хоть отбавляй. Из разных стран мира то и дело поступают сообщения об открытии гена какого-нибудь довольно отвлеченного человеческого качества. Только за последние года полтора довелось прочесть об открытии или идентификации «гена альтруизма», «гена лени», «гена религиозности», «гена любви к матери», «гена ума» (он же «ген слабоумия»), «гена долгожительства» и т. д. На этом фоне даже такие наследственные задатки, как «ген курения», «ген поцелуев» или «ген любви к пиву», выглядят приземленно и физиологично. А тем временем статистические исследования доказывают значительную роль наследственности в развитии таких черт характера, как довольство жизнью или, наоборот, склонность к самоубийству – и можно предположить, что скоро мы прочтем про идентификацию «гена оптимизма» или «гена суицида»...

Попробуем разобраться, что же реально делают в организме эти странные гены.

Молекулы-заклинания

Начнем с простого. «Ген любви к пиву» – это просто ген, кодирующий один из рецепторов горького вкуса. Человек с мутантной формой этого гена действительно не будет ощущать главную составляющую вкуса пива, и этот напиток ему, скорее всего, не понравится. Однако обратное неверно: человек может прекрасно ощущать вкус ячменного напитка и при этом на дух не переносить его.

В начале этого года почти одновременно было опубликовано сразу несколько работ, посвященных семейству генов CYP, за которым закрепился титул «генов курения». Из одних следует, что среди заядлых курильщиков преобладают носители нормальной формы гена (в то время как обладатели мутантных версий курят в среднем значительно меньше), а при отказе от курения обладателям нормальной формы гена нужно больше никотиновых пластырей для того, чтобы чувствовать себя комфортно. В то же время другое исследование утверждает, что именно для женщин с мутациями в этом гене курение во время беременности очень сильно повышает риск преждевременных родов.

Если рассматривать CYP именно как «ген курения», то кажется, что данные противоречат друг другу. Все становится на свои места, если вспомнить, что каждый ген – это программа синтеза определенного белка.

В частности, гены CYP кодируют ферменты, обеспечивающие утилизацию никотина в человеческом организме. При мутации, т. е. повреждении гена фермент оказывается неактивным, и никотин дольше живет в теле курильщика, позволяя ему обходиться без новой дозы. Но в организме матери-курильщицы «долгоиграющий» никотин активнее проникает в ткани плода, так что и вредоносный эффект от него оказывается больше. При этом, заметим, ни нормальная, ни мутантная формы гена не побуждают своих обладателей начинать курить – среди тех, кто никогда не курил, соотношение разных вариантов гена близко к среднему для всей популяции.

Из школьного курса биологии мы помним, что ген – это порция наследственной информации, контролирующая определенный признак организма. На самом деле в генах закодированы не признаки, а белки.

По сути, работа гена есть не что иное, как перевод текста из одних символов в другие – столь же однозначный, как перевод электрических сигналов от клавиатуры, на которой я набираю эту статью, в буквы на экране.

Однако белок – это особый текст, своего рода химическое заклинание: будучи «произнесен» (т. е. синтезирован), он может непосредственно воздействовать на материальные объекты. (И точно так же, как в заклинании, ошибка в одной букве может совершенно уничтожить его действие или изменить его самым непредсказуемым образом.) Правда, действие это обычно ограничено способностью что-то сделать с молекулами одного-двух химических соединений: найти, связаться, переставить группы атомов, пропустить молекулу внутрь клетки или вытолкнуть наружу... Как эти простые манипуляции могут повлиять на черты человеческой личности?

Проследить эту связь в самом деле нелегко – в любом, даже самом простом физиологическом процессе участвуют по крайней мере десятки типов белков. Каждый выполняет определенную функцию, необходимую для достижения конечного результата, – как рабочий у конвейера. Однако биохимические «конвейеры» часто ветвятся и пересекаются, так что вывод из строя даже самого важного фермента не всегда означает полное отсутствие конечного продукта – организм может найти обходные пути. И тем не менее иногда связь между чертами характера и индивидуальными особенностями биохимии все же удается проследить.

Как известно, нервный импульс с одного нейрона на другой передается нейромедиаторами – относительно простыми молекулами, выделяемыми в особых точках контакта клеток (синапсах). Когда проходящий по телу нейрону импульс приходит в синапс, веществомедиатор изливается наружу, достигает мембраны другого нейрона и связывается там с белками-рецепторами, изменяющими при этом состояние мембраны. Известны десятки медиаторов, и с каждым из них связан набор специфических белков. Есть ферменты, которые его синтезируют (часто в несколько стадий), есть рецепторы, для которых он предназначен. И обязательно есть какой-нибудь белок, который должен что-то сделать с медиатором после того, как тот сработает (чтобы вернуть рецепторы в рабочее состояние – пока на них «сидит» медиатор, они, как залипшая кнопка звонка, не могут воспринять следующий сигнал). Варианта два: либо это фермент, разрушающий медиатор, либо транспортер, втягивающий его обратно в тот нейрон, из которого он был выброшен. Как раз такой белок-транспортер есть у медиатора серотонина. Он встроен в мембрану, через которую серотонин выделяется, и как только медиатор окажется в синаптической щели (пространстве между мембранами двух нейронов), транспортер начинает таскать его молекулы обратно.

У гена, кодирующего этот белок (его научное имя SLC6A4), известна мутантная форма – «длинный аллель», в котором на 43 нуклеотида больше, чем в обычном. Эта «лишняя строчка» вставлена в регуляторную часть гена, никаких аминокислот она не кодирует и на структуру получающегося белка не влияет. Но ген с такой вставкой оказывается чрезвычайно активным – считывание белка с него идет вдвое интенсивнее, чем с обычного. В результате синаптические мембраны оказываются слишком густо усыпаны такими «хваталками». Это значит, что до нейрона-получателя дойдет меньше медиатора, чем должно, и вероятность его срабатывания будет ниже. Серотониновые нейроны имеются в самых разных отделов мозга, но особенно этот медиатор «популярен» в мозговых структурах, регулирующих эмоциональный тонус. И пониженная проходимость серотониновых синапсов означает, что их обладатель будет чаще пребывать в плохом настроении, впадать в депрессию и т. д. Именно таковы психологические особенности обладателей «длинного» аллеля гена серотонинового транспортера.

Впрочем, носители «длинного» аллеля не несут свою депрессию внутри себя – они скорее менее устойчивы к ударам судьбы. Специальное исследование показывает, что если жизненные беды (потеря работы, неудачи в личной жизни и т. д.) нечасты, то вероятность впадения в депрессию не зависит от генотипа.

По мере учащения неприятностей риск депрессии, естественно, растет в обеих группах – но у обладателей мутантной формы гена он растет гораздо быстрее. Однако разница тут чисто статистическая, что называется, «при прочих равных»: «длинный» аллель может принадлежать непробиваемому оптимисту, которому нипочем любое горе, а нормальный – ипохондрику, готовому повеситься от потери любимой ручки. И это тоже понятно: на эффективность работы серотониновых синапсов влияет не только количество белка-транспортера, но и количество рецепторов (их уже идентифицировано четыре разных типа, кодируемых четырьмя разными генами, а сколько их там всего – бог весть), активность ферментов, которые синтезируют и разлагают этот медиатор, и многое другое. Не говоря уж о том, что психическое состояние человека зависит, мягко говоря, не только от баланса серотонина.

С другой стороны, серотонин используется не только в системе регуляции эмоций. И очень вероятно, что обладатели нормального и «длинного» аллелей различаются не только склонностью к депрессии, но и другими психофизиологическими особенностями – известно, например, что высокая частота его мутантных аллелей обнаружена у профессиональных танцоров. То же самое касается и других генов. Список генетических диковинок, с которого начиналась эта статья, открывали «ген альтруизма» и «ген лени». На самом деле оба этих гена имеют управляют балансом другого нейромедиатора – дофамина, тоже широко использующегося в разных нервных структурах.

Одни исследователи нашли связь между уровнем дофамина и готовностью помочь ближнему – и идентифицированный ими ген немедленно стал «геном альтруизма». Другие увязали тот же медиатор с трудолюбием – но поскольку они сосредоточились на мутантной (т. е. дефектной) форме гена, он получил название «гена лени».

И это еще не самый поразительный пример множественности действия «поведенческих» генов. Еще в 1960-х годах ученые из новосибирского Института цитологии и генетики взялись избавить разводимых на зверофермах чернобурых лисиц от двух очень неудобных черт: врожденного страха перед человеком и сезонности размножения. О технологии идентификации и направленного изменения конкретных генов в ту пору можно было только мечтать, но сибирские генетики управились и без нее: уже через несколько поколений их питомцы ластились к людям и готовы были размножаться круглый год. Но платой за это стали висячие уши, закрученные баранкой хвосты и самое обидное – пегая окраска меха, лишавшая работу всякого практического смысла. В промышленное разведение линия не пошла, но по-прежнему поддерживается в институте, где она была выведена. Сейчас его сотрудники пытаются выяснить, изменения каких именно генов превратили лису во второе издание собаки. Характерно, кстати, что в заметке об этой работе, недавно помещенной одним из информационных агентств, фигурируют «гены человеколюбия».

МАО и трудное детство

В начале 90-х годов в Голландии на прием к врачу пришла женщина, которая собиралась завести ребенка, но боялась, что он родится больным – многие мужчины в разных поколениях ее семьи отличались склонностью к немотивированной агрессии. Медико-генетическое обследование позволило выявить причину потомственного дурного характера – мутацию в гене, кодирующем фермент моноаминоксидазу (точнее, одну из моноаминоксидаз – моноаминоксидазу А). Этот ген расположен в Х-хромосоме, поэтому у женщин его мутация почти никогда не проявляется (для этого нужно, чтобы обе хромосомы несли мутантный ген), но может через них передаваться потомству. У мужчин же Х-хромосома одна, и компенсировать мутантный ген нечем.

Моноаминоксидаза (МАО) тоже принадлежит к числу ферментов, связанных с обменом нейромедиаторов – она расщепляет целый ряд медиаторов. Помимо уже известных нам серотонина и дофамина к ее компетенции относятся адреналин и норадреналин. Мутация, обнаруженная у голландской семьи, состояла в замене всего одного нуклеотида, но этого хватило, чтобы кодон (тройка нуклеотидов), в который входил замененный нуклеотид, превратился в сигнал «конец синтеза». В результате в организме носителей мутации МАО не было вовсе – что и лишило их способности контролировать свое поведение. Позднее это было подтверждено прямыми опытами на мышах: животные с «нокаутированным» (т. е. выключенным) геном МАО отличались крайней агрессивностью, кидаясь на сородичей без всякой видимой причины.

Эта история привлекла внимание исследователей к МАО и ее роли в формировании поведения. Правда, «голландская» мутация оказалась уникальной: людей, у которых вовсе не было бы этого фермента, больше не нашли. Зато обнаружилось, что изрядная доля вполне здоровых людей несет другие мутации этого гена, заметно уменьшающие активность производимого им фермента. Естественно, возникло желание сопоставить их генетический статус с поведением.

В 2002 году были опубликованы данные масштабного исследования, в ходе которого ученые отслеживали судьбу нескольких сот жителей одного новозеландского городка – от рождения до 29 лет. В конце работы у всех участников была определена активность МАО – высокая или низкая. Первоначально под наблюдение было взято около тысячи мальчиков, но за три десятилетия около половины испытуемых по разным причинам вышла из исследования, и активность фермента удалось определить у 442 человек. 279 из них имели нормальный ген, 163 – мутантный. При прямом сравнении этих групп между ними не удалось выявить заметных различий по частоте агрессивных поступков (драки, сексуальные нападения, жестокое обращение с животными и т. д.). Но при более детальном анализе выяснилась интересная вещь: у тех, чье детство проходило в нормальных условиях, склонность к насилию не зависела от уровня активности МАО – и у «нормальных», и у «мутантов» она была одинаково невысока. Примерно такой же она была и у тех, чье детство было тяжелым (под чем подразумевалась как фактическая беспризорность, так и, напротив, чрезмерная строгость воспитателей и постоянные наказания), а активность МАО – высокой. А вот если трудное детство сочеталось с низкой активностью МАО, вероятность эксцессов возрастала раза в два. То есть, как и в случае с геном серотонинового транспортера, в благоприятных условиях оба варианта гена успешно выполняют свои функции, а вот при проверке на прочность «нормальная» версия демонстрирует явное преимущество.

Выходит, что знаменитый Ломброзо был все-таки неправ. «Врожденных преступников» не существует – есть только люди с пониженным запасом прочности к разрушительным воздействиям среды. Но если ребенок растет в семье, где его любят, он вырастает нормальным человеком независимо от того, какая у него моноаминоксидаза.

Результаты новозеландского исследования были затем подтверждены на других группах (причем не только людей, но и обезьян, которым искусственно создавали «трудное детство»). Похожие закономерности обнаружены и для ряда других черт личности и факторов риска. Установлено, например, что носители определенных аллелей некоторых генов подвержены повышенному риску заболевания шизофренией в случае курения марихуаны в подростковом возрасте. У обладателей других аллелей «травка» никак не влияет на риск шизофрении.

Вообще подобная диалектика взаимоотношений наследственности и среды – не новость для медицинской генетики. Давно известен, например, человеческий ген восприимчивости к проказе: у обладателей его мутантной формы риск заболеть примерно впятеро выше, чем у носителей нормальной версии. Но это, естественно, в случае контакта с возбудителем заболевания – лепрозной микобактерией. Без нее проказа, естественно, не разовьется, будь у человека хоть по десять мутаций в каждом «гене проказы».

Поэтому сейчас исследователи предпочитают говорить не о генах той или иной черты (или болезни), а о генах, ассоциированных с нею. Скажем, уже знакомый нам ген серотонинового транспортера SLC6A4 описывается как «ассоциированный с депрессией при неблагоприятных жизненных условиях».

Другой ген, DRD4, кодирующий рецепторы для дофамина, «ассоциирован с тягой к новым впечатлениям и синдромом гиперактивности с нарушением внимания» – эти черты проявляются у обладателей его «длинного» аллеля со вставками в регуляторной области. Кстати, последний синдром успешно лечится тренировками с обратной связью: сосредоточенность или отвлечение внимания четко отражаются на электроэнцефалограмме, и если поставить гиперактивному малышу мультик, который при отвлечении зрителя будет утрачивать резкость изображения, ребенок быстро обучается управлять своим вниманием. Его генотип при этом, как легко догадаться, не меняется.

И все же названия типа «ген счастья» порождены не только тягой журналистов к хлестким названиям или попытками ученых объяснить широкой публике, что же именно они открыли. Эти определения отражают еще и некоторую понятийную растерянность, в которой пребывает современная генетика.

Почти сто лет – с самого своего рождения в 1900 году – эта наука имела дело с почти математически точными и четкими понятиями. Изучаемые ею объекты были строго дискретными, а процессы – почти не подверженными внешним возмущениям. Ген в организме либо есть – либо его нет, аллель может быть либо такой – либо сякой, и всякий организм умирает с теми самыми генами, с которыми он родился. А в середине прошлого века, когда были открыты молекулярные механизмы наследственности, выяснилось, что они устроены как самые настоящие тексты – линейные, состоящие из отдельных «букв» и имеющие однозначное прочтение. Работать с такими структурами – одно удовольствие. итогом этой работы и стали нынешние возможности молекулярной генетики, позволившие ей перейти от изучения процессов хранения, копирования, изменения и переноса наследственной информации к изучению ее реализации.

Но здесь генетику ожидал совсем другой мир. Вместо линейного и стабильного текста – трехмерный, развивающийся во времени организм. Вместо четкой иерархии и однозначных алгоритмов – сложный и прихотливый баланс синтеза-распада, конкуренция альтернатив. Вместо максимальной автономии от внешней среды – гибкие многоуровневые механизмы реагирования и адаптации. Генетика оказалась в положении филолога, который, перевернув очередную страницу изучаемой книги, обнаружил за ней проход в реальный мир, где герои книги действуют во плоти и крови и произносят слова, которых в книге не было.

Понятийный аппарат сегодняшней молекулярной генетики явно отстает от ее собственных технических возможностей. Что и отражается, в частности, в забавных и неправдоподобных прозвищах некоторых изучаемых генов.

С развитием естественных наук, которое произошло в начале 20 века, удалось выявить принципы наследственности. В этот же период возникли новые термины, описывающие, что такое гены и геном человека. Геном называют единицу наследственной информации, отвечающую за формирование в организме носителя какого-либо свойства. В живой природе именно передача этой информации является основой всего процесса размножения. Этот термин, как и само определение, что такое гены, впервые был использован ботаником Вильгельмом Йогансеном в 1909 году.

Структура гена

На сегодняшний день установлено, что гены - это отдельные участки ДНК - дезоксирибонуклеиновой кислоты. Каждый ген отвечает за передачу в организме человека данных о строении РНК (рибонуклеиновой кислоты) или белка. Как правило, в составе гена присутствует несколько участков ДНК. Структуры, которые берут на себя передачу наследственной информации, называют кодирующими последовательностями. Но при этом в ДНК есть и такие структуры, которые влияют на проявление гена. Данные участки называются регуляторными. То есть гены включают кодирующие и регуляторные последовательности, которые в ДНК расположены отдельно друг от друга.

Геном человека

В 1920 году Ганс Винклер ввел такое понятие, как геном. Сначала этот термин использовался для обозначения набора генов непарного одинарного набора хромосом, который присущ биологическому виду. Было такое мнение, что геном целиком восполняет все свойства организма определенного вида. Но в дальнейшем значение этого термина немного изменилось, так как проведенные исследования показали, что такое определение не совсем соответствует истине.

Генетическая информация

Было установлено, что такое гены и то, что в ДНК многих организмов присутствуют не кодирующие ничего последовательности. К тому же часть генетической информации содержится в ДНК, которые расположены вне ядра клетки. Часть генов, отвечающих за кодирование одного и того же признака, может существенно различаться по своей структуре. То есть геномом называют собирательный набор генов, которые содержатся в хромосомах и за их пределами. Он характеризует свойства определенной популяции особей, но при этом генетический набор каждого отдельного организма имеет существенные отличия от его генома.

Что является основой наследственности

В попытках определить, что такое гены, было проведено множество самых различных исследований. Поэтому нельзя однозначно ответить на этот вопрос. Если верить биологическому определению этого термина, то ген - это последовательность ДНК, содержащая информацию об определенном белке. И до недавних пор такого объяснения этого термина было вполне достаточно. Но сейчас установлено, что последовательность, в которой закодирован белок, не всегда является непрерывной. Она может прерываться вкрапленными в нее участками, не несущими никакой информации.

Идентификация гена

Можно идентифицировать ген по группе мутаций, каждая из которых предупреждает создание соответствующего белка. Тем не менее данное утверждение может считаться правильным и касаемо прерывистых генов. Свойства их кластеров в данном случае оказываются гораздо сложнее. Но это утверждение довольно спорное, так как многие гены с прерывистой цепочкой обнаружены в таких ситуациях, когда невозможно провести тщательный генетический анализ. Считалось, что геном довольно постоянен, и какие-либо изменения в его общей структуре происходят лишь в крайних случаях. А конкретно лишь в растянутой эволюционно-временной шкале. Но такое суждение противоречит недавно полученным данным, доказывающим, что в ДНК периодически происходят определенные перестройки, и что есть относительно изменчивые компоненты генома.

Свойства генов, выявленные в работе Менделя

В работе Менделя, а именно в его первом и втором законах, точно сформулировано, что такое гены и каковы их свойства. В первом законе рассматриваются особенности индивидуального гена. В организме присутствуют две копии каждого гена, то есть если говорить языком современности, он диплоиден. Одна из двух копий гена попадает к потомку от родителя через гаметы, то есть передается по наследству. Гаметы, объединяясь, образуют оплодотворенное яйцо (зиготу), которая несет по одной копии от каждого родителя. Следовательно, организм получает одну материнскую копию гена и одну отцовскую.

Двуликий ген старения

Как известно, старение человека объясняется не только накоплением неполадок в организме, но и работой определенных генов, несущих информацию о старении. Сразу возникает вопрос о том, почему в процессе эволюции этот ген сохранился. Зачем он нужен в организме и какую роль играет? Исследования на эту тему были основаны на выведении вида мышей без характерного белка p66Shc. Особи, у которых отсутствовал данный белок, не были склонны к накоплению жировой прослойки, медленнее старели, меньше страдали сдвигами метаболизма, сердечно-сосудистыми заболеваниями и диабетом. Выходит, этот белок является геном, ускоряющим процессы старения. Но такие результаты дали только лабораторные исследования. Потом животные были перенесены в естественные условия обитания, и в результате популяция мутантных особей стала снижаться. По этой причине было принято решение о дальнейшем исследовании, и как итог был подтвержден факт, что «ген старения» имеет большое значение в процессах адаптации организма и отвечает за естественный энергетический обмен в организме животных.

Ричард Докинз - биолог-эволюционист и его «Эгоистичный ген»

Книга, которую написал Ричард Докинз («Эгоистичный ген»), является наиболее популярной книгой по эволюции. В книге задается не совсем типичный угол обзора, показывается, что эволюция, а точнее естественный отбор, происходит в первую очередь на уровне генов. Конечно, сегодня этот факт уже не вызывает сомнения, но в 1976 году такое заявление было весьма новаторским. Мы созданы нашими генами. Все живые существа необходимы для того, чтобы сохранить гены. Мир эгоистичного гена - это мир безжалостной эксплуатации, жесткой конкуренции и обмана.

ВЗАИМОДЕЙСТВИЕ ГЕНОВ. ЦИТОПЛАЗМАТИЧЕСКАЯ НАСЛЕДСТВЕННОСТЬ

Каждый ген определял только один признак и развитие каждого признака зависело только от одного гена. Однако, как правило, отношения между генами и признаками гораздо сложнее.

Множественное действие гена . Один и тот же ген может влиять на формирование ряда признаков организма. Например, ген, вызывающий образование бурой семенной кожуры у гороха, способствует развитию пигмента и в других частях растений. Растения с семенами, покрытыми бурой семенной кожурой, имеют цветки фиолетовой окраски, а растения с белой кожурой семян - белые цветки. Влияние одного гена на развитие многих признаков называют множественным действием гена. Такое множественное действие характерно для большинства генов.

Обычно судят о действии гена только по тем признакам, которые легко обнаруживаются. Например, у мухи дрозофилы глаза имеют красную окраску, развитие которой обусловлено присутствием гена W. При наличии аллеля w пигмент, влияющий на окраску глаз, отсутствует и они становятся белыми. Оказалось, что аллель w влияет также на осветление окраски тела и изменение формы некоторых внутренних органов мухи. В некоторых случаях проявление множественного действия гена легко наблюдать. Например, у человека есть ген, определяющий рыжую окраску волос. Этот же ген обусловливает более светлую окраску кожи, а также появление веснушек.

Отношение ген - признак. При скрещивании в результате взаимодействия двух различных генов в потомстве могут возникать новые признаки, отсутствовавшие у родительских организмов. Это явление называют новообразованием при скрещиваниях. Оно наблюдается очень часто в природе при разведении домашних животных и культурных растений.

Приведем пример. У душистого горошка - садового растения - есть много сортов, которые отличаются по окраске цветков, в частности сорта с белыми цветками. При некоторых комбинациях скрещивания двух белых сортов между собой, полученные семена дают растения с фиолетовыми цветками. Биохимический анализ показал, что фиолетовая окраска цветков душистого горошка - результат реакции между двумя веществами, каждое из этих веществ образуется под действием определенного гена. Имеется два гена, каждый с двумя аллелями - С, с и Р, р. Окраска цветков образуется тогда, когда в генотипе растения присутствуют одновременно два доминантных гена С и Р. Таким образом, мы видим, что в генотипе любого организма гены взаимодействуют между собой; на фенатипическое проявление признака влияет целый комплекс генов. Сочетания генов в организме обусловливают многообразие индивидуальных отличий особей одного вида.

Цитоплазматическая наследственность . Приведенное выше доказательство ведущей роли ядра и хромосом в генетических процессах не следует рассматривать как свидетельство отсутствия какой-либо роли цитоплазмы в передаче свойств из поколения в поколение. Участие цитоплазмы в формировании некоторых признаков связано с работой внеядерных генов, расположенных в органеллах. Митохондрии и хлоропласты содержат ДНК, ее гены кодируют ряд признаков. О наличии внеядерных генов свидетельствуют данные о наследовании некоторых признаков у растений.

К их числу относится пестролистность у ночной красавицы и львиного зева. Наследование этого признака не укладывается в рамки законов Менделя. Объясняется такое наследование тем, что пластиды бывают двух типов - окрашенные и неокрашенные. Эти органеллы воспроизводятся в клетке независимо от ее деления и случайно распределяются между дочерними клетками. Из клеток, содержащих смесь зеленых и неокрашенных пластид, при делении могут появляться клетки трех возможных типов: содержащие только неокрашенные, окрашенные пластиды и смесь пластид.

В результате возникают три варианта окраски растений: окрашенные, неокрашенные и мозаичные. Поскольку единственный способ проникновения пластид в зиготу связан с яйцеклеткой, а не со спермием (так как он не содержит пластид), наблюдается материнское наследование.

Известно множество фактов, доказывающих существование цитоплазматической наследственности не только у растений, но и у животных и микроорганизмов.

"хромосома" - слова, которые знакомы каждому школьнику. Но представление об этом вопросе довольно обобщенное, так как для углубления в биохимические дебри требуются специальные знания и желание все это понимать. А оно, если и присутствует на уровне любопытства, то быстро пропадает под тяжестью изложения материала. Попробуем разобраться в хитросплетениях в научно-полярной форме.

Ген - это наименьшая структурная и функциональная частица информации о наследственности у живых организмов. По сути он представляет собой небольшой участок ДНК, в котором содержится знание об определенной последовательности аминокислот для построения белка либо функциональной РНК (с которой также будет синтезирован белок). Ген определяет те признаки, которые будут наследоваться и передаваться потомками дальше по генеалогической цепи. У некоторых одноклеточных организмов существует перенос генов, который не имеет отношения к воспроизведению себе подобных, он называется горизонтальным.

"На плечах" генов лежит огромная ответственность за то, как будет выглядеть и работать каждая клетка и организм в целом. Они управляют нашей жизнью от момента зачатия до самого последнего вздоха.

Первый научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 году опубликовал свои наблюдения о результатах при скрещивании гороха. Наследственный материал, который он использовал, четко показывал закономерности передачи признаков, таких как цвет и форма горошин, а также цветки. Этот монах сформулировал законы, которые сформировали начало генетики как науки. Наследование генов происходит потому, что родители отдают своему чаду по половинке всех своих хромосом. Таким образом, признаки мамы и папы, смешиваясь, образуют новую комбинацию уже имеющихся признаков. К счастью, вариантов больше, чем живых существ на планете, и невозможно отыскать двух абсолютно идентичных существ.

Мендель показал, что наследст-венные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособлен-ных) единиц. Эти единицы, представленные у особей парами (аллелями), остаются дискретными и передаются по-следующим поколениям в мужских и женских га-метах, каждая из которых содержит по одной едини-це из каждой пары. В 1909 году датский ботаник Иогансен назвал эти единицы генами. В 1912 году генетик из Соединенных Штатов Америки Морган показал, что они находятся в хромосомах.

С тех пор прошло больше полутора веков, и исследования продвинулись дальше, чем Мендель мог себе представить. На данный момент ученые остановились на мнении, что информация, находящаяся в генах, определяет рост, развитие и функции живых организмов. А может быть, даже и их смерть.

Классификация

Структура гена содержит в себе не только информацию о белке, но и указания, когда и как ее считывать, а также пустые участки, необходимые для разделения информации о разных белках и остановки синтеза информационной молекулы.

Существует две формы генов:

  1. Структурные - они содержат в себе информацию о строении белков или цепей РНК. Последовательность нуклеотидов соответствует расположению аминокислот.
  2. Функциональные гены отвечают за правильную структуру всех остальных участков ДНК, за синхронность и последовательность ее считывания.

На сегодняшний день ученые могут ответить на вопрос: сколько генов в хромосоме? Ответ вас удивит: около трех миллиардов пар. И это только в одной из двадцати трех. Геном называется наименьшая структурная единица, но она способна изменить жизнь человека.

Мутации

Случайное или целенаправленное изменение последовательности нуклеотидов, входящих в цепь ДНК, называется мутацией. Она может практически не влиять на структуру белка, а может полностью извратить его свойства. А значит, будут локальные или глобальные последствия такого изменения.

Сами по себе мутации могут быть патогенными, то есть проявляться в виде заболеваний, либо летальными, не позволяющими организму развиваться до жизнеспособного состояния. Но большинство изменений проходит незаметно для человека. Делеции и дупликации постоянно совершаются внутри ДНК, но не влияют на ход жизни каждого отдельного индивидуума.

Делеция - это потеря участка хромосомы, который содержит определенную информацию. Иногда такие изменения оказываются полезными для организма. Они помогают ему защититься от внешней агрессии, например вируса иммунодефицита человека и бактерии чумы.

Дупликация - это удвоение участка хромосомы, а значит, и совокупность генов, которые он содержит, также удваивается. Из-за повторения информации она хуже подвержена селекции, а значит, может быстрее накапливать мутации и изменять организм.

Свойства гена

У каждого человека имеется огромная Гены - это функциональные единицы в ее структуре. Но даже такие малые участки имеют свои уникальные свойства, позволяющие сохранять стабильность органической жизни:

  1. Дискретность - способность генов не смешиваться.
  2. Стабильность - сохранение структуры и свойств.
  3. Лабильность - возможность изменяться под действием обстоятельств, подстраиваться под враждебные условия.
  4. Множественный аллелизм - существование внутри ДНК генов, которые, кодируя один и тот же белок, имеют разную структуру.
  5. Аллельность - наличие двух форм одного гена.
  6. Специфичность - один признак = один ген, передающийся по наследству.
  7. Плейотропия - множественность эффектов одного гена.
  8. Экспрессивность - степень выраженности признака, который кодируется данным геном.
  9. Пенетрантность - частота встречаемости гена в генотипе.
  10. Амплификация - появление значительного количества копий гена в ДНК.

Геном

Геном человека - это весь наследственный материал, который находится в единственной клетке человека. Именно в нем содержатся указания о построении тела, работе органов, физиологических изменениях. Второе определение данного термина отражает структуру понятия, а не функцию. Геном человека - это совокупность генетического материала, упакованного в гаплоидном наборе хромосом (23 пары) и относящегося к конкретному виду.

Основу генома составляет молекула хорошо известная как ДНК. Все геномы содержат по крайней мере два вида информации: кодированная информация о структуре молекул-посредников (так называемых РНК) и белка (эта информация содержится в генах), а также инструкции, которые определяют время и место проявления этой информации при развитии организма. Сами гены занимают небольшую часть генома, но при этом являются его основой. Информация, записанная в генах, — своего рода инструкция для изготовления белков, главных строительных кирпичиков нашего тела.

Однако для полной характеристики генома недостаточно заложенной в нем информации о структуре белков. Нужны еще данные об элементах которые принимают участие в работе генов, регулируют их проявление на разных этапах развития и в разных жизненных ситуациях.

Но даже и этого мало для полного определения генома. Ведь в нем присутствуют также элементы, способствующие его самовоспроизведению (репликации), компактной упаковке ДНК в ядре и еще какие-то непонятные пока еще участки, иногда называемые «эгоистичными» (то есть будто бы служащими только для самих себя). По всем этим причинам в настоящий момент, когда заходит речь о геноме, обычно имеют в виду всю совокупность последовательностей ДНК, представленных в хромосомах ядер клеток определенного вида организмов, включая, конечно, и гены.

Размер и структура генома

Логично предположить, что ген, геном, хромосома отличаются у разных представителей жизни на Земле. Они могут быть как бесконечно маленькими, так и огромными и вмещать в себе миллиарды пар генов. Структура гена также будет зависеть от того, чей геном вы исследуете.

По соотношению между размерами генома и числом входящих в него генов можно выделить два класса:

  1. Компактные геномы, имеющие не более десяти миллионов оснований. У них совокупность генов строго коррелирует с размером. Наиболее характерны для вирусов и прокариотов.
  2. Обширные геномы состоят более чем из 100 миллионов пар оснований, не имеющих взаимосвязи между их длиной и количеством генов. Чаще встречаются у эукариотов. Большинство нуклеотидных последовательностей в этом классе не кодируют белков или РНК.

Исследования показали, что в геноме человека находится около 28 тысяч генов. Они неравномерно распределены по хромосомам, но значение этого признака остается пока загадкой для ученых.

Хромосомы

Хромосомы - это способ упаковки генетического материала. Они находятся в ядре каждой эукариотической клетки и состоят из одной очень длинной молекулы ДНК. Их легко можно увидеть в световой микроскоп в процессе деления. Кариотипом называется полный набор хромосом, который является специфичным для каждого отдельного вида. Обязательными элементами для них являются центромера, теломеры и точки репликации.

Изменения хромосом в процессе деления клетки

Хромосома - это последовательные звенья цепи передачи информации, где каждое следующее включает предыдущее. Но и они претерпевают определенные изменения в процессе жизни клетки. Так, например, в интерфазе (период между делениями) хромосомы в ядре расположены рыхло, занимают много места.

Когда клетка готовится к митозу (т. е. к процессу разделения надвое), хроматин уплотняется и скручивается в хромосомы, и теперь его становится видно в световой микроскоп. В метафазе хромосомы напоминают палочки, близко расположенные друг к другу и соединенные первичной перетяжкой, или центромерой. Именно она отвечает за формирование веретена деления, когда группы хромосом выстраиваются в линию. В зависимости от размещения центромеры существует такая классификация хромосом:

  1. Акроцентрические - в этом случае центромера расположена полярно по отношению к центру хромосомы.
  2. Субметацентрические, когда плечи (то есть участки, находящиеся до и после центромеры) неравной длины.
  3. Метацентрические, если центромера разделяет хромосому ровно посередине.

Данная классификация хромосом была предложена в 1912 году и используется биологами вплоть до сегодняшнего дня.

Аномалии хромосом

Как и с другими морфологическими элементами живого организма, с хромосомами тоже могут происходить структурные изменения, которые влияют на их функции:

  1. Анеуплоидия. Это изменение общего числа хромосом в кариотипе за счет добавления или удаления одной из них. Последствия такой мутации могут быть летальными для еще не родившегося плода, а также приводить к врожденным дефектам.
  2. Полиплоидия. Проявляется в виде увеличения количества хромосом, кратного половине их числа. Чаще всего встречается у растений, например водорослей, и грибов.
  3. Хромосомные аберрации, или перестройки, - это изменения в строении хромосом под воздействием факторов внешней среды.

Генетика

Генетика - это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы. В отличие от многих других биологических наук она с момента своего возникновения стремилась быть точной наукой. Вся история генетики — это история создания и использования все более и более точных методов и подходов. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, генетической инженерии, микробиологической промышленности.

Наследственность - способность организма обеспечивать в ряду морфологических, биохимических и физиологических признаков и особенностей. В процессе наследования воспроизводятся основные видоспецифические, групповые (этнические, популяционные) и семейные черты строения и функционирования организмов, их онтогенеза (индивидуального развития). Наследуются не только определенные структурно-функциональные характеристики организма (черты лица, некоторые особенности обменных процессов, темперамента и др.), но и физико-химические особенности строения и функционирования основных биополимеров клетки. Изменчивость — разнообразие признаков среди представителей определенного вида, а также свойство потомков приобретать отличия от родительских форм. Изменчивость вместе с наследственностью представляют собой два неразделимых свойства живых организмов.

Синдром Дауна

Синдром Дауна - генетическое заболевание, при котором кариотип состоит из 47 хромосом у человека вместо обычных 46. Это одна из форм анеуплоидии, о которой говорилось выше. В двадцать первой паре хромосом появляется добавочная, которая привносит лишнюю генетическую информацию в геном человека.

Название свое синдром получил в честь врача, Дона Дауна, который открыл и описал его в литературе как форму психического расстройства в 1866 году. Но генетическая подоплека была обнаружена почти на сто лет позже.

Эпидемиология

На данный момент кариотип в 47 хромосом у человека встречается один раз на тысячу новорожденных (ранее статистика была иной). Это стало возможным благодаря ранней диагностике данной патологии. Заболевание не зависит от расы, этнической принадлежности матери или ее социального положения. Оказывает влияние возраст. Шансы родить ребенка с синдромом Дауна возрастают после тридцати пяти лет, а после сорока соотношение здоровых детей к больным равняется уже 20 к 1. Возраст отца старше сорока лет также увеличивает шансы на рождение ребенка с анеуплоидией.

Формы синдрома Дауна

Наиболее частый вариант - появление дополнительной хромосомы в двадцать первой паре по ненаследственному пути. Он обусловлен тем, что во время мейоза эта пара не расходится по веретену деления. У пяти процентов заболевших наблюдается мозаицизм (дополнительная хромосома содержится не во всех клетках организма). Вместе они составляют девяносто пять процентов от общего количества человек с этой врожденной патологией. В остальных пяти процентах случаев синдром вызван наследственной трисомией двадцать первой хромосомы. Однако рождение двух детей с этим заболеванием в одной семье незначительно.

Клиника

Человека с синдромом Дауна можно узнать по характерным внешним признакам, вот некоторые из них:

Уплощенное лицо;
- укороченный череп (поперечный размер больше продольного);
- кожная складка на шее;
- складка кожи, которая прикрывает внутренний угол глаза;
- чрезмерная подвижность суставов;
- сниженный тонус мышц;
- уплощение затылка;
- короткие конечности и пальцы;
- развитие катаракты у детей старше восьми лет;
- аномалии развития зубов и твердого неба;
- врожденные пороки сердца;
- возможно наличие эпилептического синдрома;
- лейкозы.

Но однозначно поставить диагноз, основываясь только на внешних проявлениях, конечно, нельзя. Необходимо провести кариотипирование.

Заключение

Ген, геном, хромосома - кажется, что это просто слова, значение которых мы понимаем обобщенно и весьма отдаленно. Но на самом деле они сильно влияют на нашу жизнь и, изменяясь, заставляют меняться и нас. Человек умеет подстраиваться под обстоятельства, какими бы они ни оказались, и даже для людей с генетическими аномалиями всегда найдется время и место, где они будут незаменимы.

Что еще почитать