Качестве строительного материала используется с. Классификация основных строительных материалов

Все материалы имеют определенную структуру на уровне макро или микроструктуры. Макро- большой, структура видимая невооруженным глазом. Микроструктура видимая с помощью оптического прибора.

Различают по структуре материалы гомогенные и гетерогенные. Гомогенные материалы, когда единица объема содержит в среднем одинаковое число однородных структурных элементов.

Гетерогенные материалы содержат различные структурные элементы или различное их число. Не всегда гомогенная структура может оказать таковой на уровне микроструктуры материала.

Строительные материалы классифицируют по:

А) назначениям:

Б) по сырью:

В) поусловию работы;

Г) по происхождению:

Д) способу производства:

А) Классификация по назначению.

Материалы по назначению делятся на конструктивные и отделочные. Конструктивные элементы здания делятся на несущие и ограждающие, на горизонтальные и вертикальные. К вертикальным относятся фундаменты, стены, колонны. К горизонтальным перекрытия, балки, ригели, фермы, плиты. Несущие конструкции несут нагрузку не только собственного веса, но и выше лежащих конструкций и оборудования, мебели, людей и т. д. Ограждающие конструкции разделяют внутреннее пространство на отдельные помещения и защищают здание от атмосферного воздействия.

Б) Классификация по сырью:

    Природные каменные материалы – рыхлые (песок, щебень, гравий…), штучные материалы.

    Неорганические вяжущие вещества – продукт обжига природного сырья или искусственных смесей с последующим измельчением (портландцемент, шлакопортландцемент, известь, гипс).

    Бетоны и строительные растворы на основе неорганических вяжущих

    Керамические материалы. Получают из глины путем формования, сушки, обжига. (кирпич, кафель, трубы).

    Материалы из минеральных расплавов (стекло).

    Теплоизоляционные и акустические материалы на органическом (мягкие двп, торфоплиты) и неорганическом (мин. вата, стекловата) вяжущем.

    Битумные и дегтевые материалы (рубероид, мастика, толь).

    Полимерные строительные материалы (стеклопластик, пенопласты…).

    Лакокрасочные материалы.

    Лесные материалы.

    Металлические материалы.

Эффективные материалы те, которые имеют низкую стоимость, долговечные, высокопрочные. С целью снижения стоимости в качестве сырья стараются использовать отходы различных производств. используют энергосберегающие технологии. Производство цемента по сухому способу способствует сокращению тепла в 1,5 – 2 раза.

В) Классификация по условию работы материала :

Конструктивные строительные материалы, которые воспринимаю и передают нагрузку – природные каменные, бетоны и строительные, керамические, полимерные, лесные, металлические, композиционные, полимербетон.

Материалы специального назначения –теплоизоляционные (пенопласты, мин. ваты), акустические, гидроизоляционные, кровельные, герметизирующие, огнеупорные, для радиационной защиты, антикоррозийные.

Г) Строительные материалы по происхождению делятся на естественные и искусственные. Естественные встречающиеся в природе. К ним относятся древесина, природные каменные материалы, битумы. Искусственные материалы не встречаются в природе, а получаются путем обработки при высокой температуре и давлении или одновременном действии высокой температуры и давлении. Процессы переработки или получения материалов связаны со сложными физическими или химическими процессами изменения стркутуры и т.д.

Д) По способу производства строительные материалы, например из металлов классифицируются на изготавливаемые методами:

Прессованием

Прокаткой

Все строительные материалы по своим свойствам должны удволетворять ГОСТу.

Строительные материалы предназначены для строительства или выполнения тех или иных строительных и ремонтных работ. По типу происхождения подразделяются на материалы природного происхождения и искусственные. К первому типу относятся древесина и ее подвиды, песок, щебень, земля, гранит мрамор, известняк, ракушняк, все, чей состав остается не измененным технически, такой вид материалов может поддаваться обработке, но его состав не меняется.

Что касается искусственных материалов, то это может быть что угодно, например кирпич, пусть его и производят из природных материалов, но – это их смесь, а значит – искусственный материал. Сюда можно отнести смеси, растворы, любые отделочные материалы.

Виды материалов по назначению

  • Общего назначения . Их назначение – возведение зданий, сюда относятся цемент, известь, шлакоблоки, древесина.
  • Специального назначения , к этому варианту можно отнести группу предназначенную например для возведения объекта повышенной прочности или бомбоубежища – это может быть огнеупорные кирпичи, или специальный закаленный бетон.
  • Конструкционные виды строительных материалов. Сюда относятся детали, которые применяются для производства различных сооружений. Это может быть чугун, сталь.
  • Теплоизоляционные стройматериалы , они нужны для обеспечения теплового режима сооружений или построек. . Это могут быть утеплители, пенополистирол, пенопласт, изовата и другие материалы.
  • Акустические строительные материалы , они нужны для звукоизоляции и звукопоглощения. Это могут быть специальные панели, или сыпучие материалы, а могут быть даже обои.
  • Кровельные и гидроизоляционные материалы . . Используются для кровельных работ – к ним можно отнести: гидроизоляционную мастику, грунтовку, а так же разные виды рубероида.
  • Герметизирующие строительные материалы – это группа основной функцией, которой является герметизация и уплотнение швов, стыков как внутри помещения, так и снаружи. К ним относятся замазки, пасты, мастики.
  • Последний подвид по назначению – отделочные стройматериалы . Они предназначены для декоративных, отделочных работ. Сюда относятся обои, керамическая плитка, паркет, ламинат, краска, лаки, пластиковые панели и многое другое.

Так же строительные материалы подразделяются по технологическому признаку и способу изготовления. К подтипам этой категории можно отнести:

  • Природные каменные материалы и изделия из них. Их можно использовать как для уличной отделки, так и внутренней – декоративной.
  • Вяжущие материалы , они бывают органического и не органического происхождения. Соответственно к ним можно отнести – битумы, дегти, синтетические полимеры и олигомеры.
  • Не органические – известь, цемент, гипсовые вяжущие и др. Лесные материалы () и изделия из них

Могут быть произведены из разных пород древесины. Их вариант исполнения бывает разный как для отделочных работ, так и основной – для возведения целых домов. Это могут быть брёвна, плинтуса, доска для пола, вагонка для бани, лаги для потолков, брус, декоративные изделия и много другое. Последний подвид технологического видаметаллические изделия. Это изделия из металла – любого предназначения. К ним можно отнести поручни, сливы, трубы, опоры и много другое.

Все виды и подвиды материалов необходимы для строительства. Во всех есть положительные и отрицательные стороны.

Все строительные материалы по видам делятся на природные и искусственные. При этом к искусственным относят такие, которые в процессе изготовления подвергаются термической, химической или другой обработке, изменяющей их структуру, химический состав и т. д.

В строительстве используются в основном следующие виды строительных материалов:

  1. природные лесоматериалы и искусственные материалы, изготовляемые на основе древесины;
  2. металлы;
  3. каменные материалы - природные и искусственные;
  4. вяжущие материалы или просто вяжущие - минеральные и органические (известь, цемент, асфальт и др.);
  5. растворы и бетоны;
  6. специальные строительные материалы -- теплоизоляционные, гидроизоляционные, кровельные, отделочные и др.

Приведенная классификация является условной, так как и кирпич, и бетон, и даже оконное стекло по существу представляют собой разновидности каменных материалов. Поэтому, в отличие от машин и оборудования, изготовляемых в основном из металлов, здания и сооружения во многих случаях возводят почти целиком из камня!

Необходимость отдельного рассмотрения бетонов и растворов диктуется особым их значением в современном строительстве.

Широко внедряемые синтетические материалы (пластмассы), являющиеся разновидностью искусственных материалов, применяются в строительстве пока в ограниченных масштабах - для полов, отделки стен, теплоизоляции (пористые пластмассы) и т. д.

Одним из важнейших свойств строительных материалов, используемых для несущих конструкций, является прочность.

В строительстве используются в основном два показателя прочности:

  • для хрупких материалов (камень, бетон) - предел прочности на сжатие (временное сопротивление);
  • для пластичных (мягкая сталь) - предел текучести.

В том и другом случае прочность измеряют в кг/см2 (иногда в кг/мм2).

Материалы для ограждающих конструкций должны в первую очередь обладать достаточно низким коэффициентом теплопроводности.

Коэффициент теплопроводности к измеряется в ккал/м - град - час. Непосредственное его определение возможно только в лабораторных условиях.

Очень удобным и более простым для определения показателем, достаточно хорошо характеризующим теплозащитные свойства материалов, является объемный вес - вес единицы объема материала в его натуральном состоянии (т. е. при наличии в нем пор и пустот).

Кроме того, объемный вес непосредственно влияет на собственный вес отдельных конструкций, а также зданий и сооружений в целом и, следовательно, определяет тоннаж перевозок больших количеств материалов, используемых строительной промышленностью.

Для таких плотных материалов, как сталь, объемный вес совпадает с удельным; для пористых материалов объемный вес меньше удельного.

Объемный вес строительных материалов принято определять в кг/м3 или в Т/м3.

Влагопроницаемость (вернее непроницаемость) является основным свойством кровельных, гидроизоляционных и других материалов.

Морозостойкость является важным показателем для материалов наружных стен, подверженных попеременному замерзанию и оттаиванию (в наружных слоях). Она проверяется многократным замораживанием и оттаиванием образцов в насыщенном водой состоянии и оценивается количеством циклов испытания, которое образцы выдерживают без существенного снижения прочности и потери в весе. Морозостойкость обозначается символом Мрз с добавлением цифры, показывающей число циклов, например, Мрз 15, Мрз50. Морозостойкость существенно зависит от водопоглощения материала, так как разрушение при замораживании обусловлено расширением воды при ее замерзании в порах материала.

Огнестойкость . По отношению к действию огня (при пожаре) строительные материалы, характеризуются сгораемостью, а элементы здания огнестойкостью.

По признаку сгораемости материалы делятся на 3 категории:

  1. сгораемые (древесина),
  2. несгораемые (камни, металлы)
  3. и трудносгораемые, которые воспламеняются и продолжают гореть или тлеть только при наличии источника огня.

Огнестойкость конструкций характеризуется пределом огнестойкости (час), показывающим длительность сопротивления конструкции огню при пожаре, которая зависит как от вида примененного материала, так и от толщины конструкции, ее массивности и т. д. Для различных элементов зданий предел огнестойкости установлен нормами от 0,25 до 5 час.

Понятия несгораемости и огнестойкости не всегда совпадают. Например, такой несгораемый материал, как сталь, обладает сравнительно невысокой огнестойкостью, так как при температурах выше 500-600° модуль упругости и прочностные характеритки стали резко снижаются и конструкции претерпевают катастрофические деформации.

К материалам, предназначенным для работы при высоких температурах, предъявляются требования жаростойкости, а при очень высоких - огнеупорности.

Материалы, работающие в условиях, где возможна их коррозия, должны обладать достаточной коррозионной стойкостью. Под воздействием ррзличных химических агентов коррозии подвержено большинство строительных материалов (сталь, бетон, каменная кладка и др.).

Сопротивляемость органических строительных материалов гнению именуется биостойкостью. Применением различных антисептических средств биосгойкость материалов может быть повышена, но обычно лишь на какой-то ограниченный период времени.

Чтобы легче ориентироваться в многообразии строительных материалов, их классифицируют по назначению, исходя из условий работы материалов в сооружениях или по технологическому признаку, учитывая вид сырья, из которого получают материал и способ изготовления.

По назначению материалы можно условно разделить на две группы:

конструкционные и материалы специального назначения.

Конструкционные материалы, применяемые главным образом для несущих конструкций, различают следующие:

      Природные каменные материалы.

      Неорганические вяжущие.

      Искусственные каменные, получаемые:

    омоноличиванием с помощью вяжущих веществ (бетон, железобетон, растворы);

    спеканием (керамические материалы);

    плавлением (стекло).

    Металлы (сталь, чугун, алюминий, сплавы).

    Полимеры и пластмассы.

    Древесина.

    Композиционные (асбестоцемент, стеклопластик, …).

Строительные материалы специального назначения , необходимые для защиты конструкций от вредных воздействий среды или повышения эксплуатационных свойств и создания комфорта, следующие:

      Теплоизоляционные.

      Акустические.

      Гидроизоляционные, кровельные, герметизирующие.

      Отделочные.

      Антикоррозионные.

      Огнеупорные.

      Материалы для защиты от радиации и др.

Каждый материал обладает комплексом разнообразных свойств, определяющих область его применения и возможность сочетания с другими материалами.

Известно, что свойства строительных материалов определяют область их применения. Только при правильной и качественной оценке свойств материалов, могут быть получены прочные и долговечные строительные конструкции зданий и сооружений.

Свойство - способность материала определенным образом реагировать на отдельный или чаще всего действующий в совокупности с другими внешний или внутренний фактор. Действие того или другого фактора обу­словлено как составом и строением материала, так и эксплуатационными условиями материала в конструкции зданий и сооружений.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ПОВЕДЕНИЕ

СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ В УСЛОВИЯХ ПОЖАРА

Эксплуатационные факторы:

Чтобы здание или сооружение выполняло свое назначение, и было долговечным, необходимо отчетливо представлять те эксплуатационные условия, в которых будет работать каждая изготовленная ими конструкция. Зная эти условия, можно установить, какие свойства должен иметь материал, предназначенный для изготовления данной конструкция.

Например, главным требованием к материалам, из которых изготовляются несущие конструкции, является их способность хорошо сопротивляться изменению формы и разрушению под действием нагрузок, а также в ряде случаев низкие теплопроводность и звукопроницаемость (например, для ограждающих конструкций).

К эксплуатационным факторам относятся:

    Область применения материала.

    Условия эксплуатации.

Факторы пожара:

    Температурный режим и продолжительность пожара.

    Средства пожаротушения.

    Агрессивная среда при пожаре (токсичность продуктов горения, разрушающая материалы).

Строительные материалы, используемые при строительстве и ремонте, должны обеспечивать определенный срок эксплуатации, комфорт и безопасность дома, коттеджа, квартиры. Для выбора подходящего стройматериала необходимо знать виды и классификацию выпускаемой продукции, ориентироваться в перечне контролируемых свойств и их показателей.

Ниже дано описание классификации и свойств строительных материалов, которое поможет лучше ориентироваться при выборе стройматериалов для строительства или ремонта.

Классификация стройматериалов

Все строительные материалы классифицируют по назначению, виду и способу получения:

По назначению строительные материалы делят на:

  • конструкционные;
  • отделочные;
  • теплоизоляционные;
  • гидроизоляционные;
  • акустические;
  • герметизирующие;
  • антикоррозионные.

По виду различают стройматериалы:

  • каменные;
  • лесные;
  • металлические;
  • полимерные;
  • керамические;
  • стеклянные и т.п.

По способу получения строительные материалы делятся на:

  • природные – их добывают в месте, где они образовались (например, горные породы) или выросли (древесина). При использовании природных строительных материалов применяют главным образом механическую обработку – распиловку или дробление. Соответственно свойства природных стройматериалов зависят от происхождения исходной породы и способа обработки;
  • искусственные – их изготавливают из природного сырья ( , глина, известняк, газ, нефть и т.п.) с добавлением промышленных отходов (зола, шлаки). Искусственные стройматериалы приобретают новые свойства, которые могут значительно отличаться от свойств исходного природного сырья.

Свойства стройматериалов

Свойства любого материала зависят от его состава и структуры и могут изменяться в широких пределах. При этом они не являются постоянными, а изменяются с течением времени под воздействием среды, в которой эксплуатируется здание.

Скорость изменений может меняться от очень медленной (например, разрушение горных пород) до быстрой (повышение хрупкости полимеров под воздействием ультрафиолетовых лучей или вымывание из растворимых веществ).

Поэтому при выборе стройматериалов для строительства дома необходимо руководствоваться не только теми свойствами, которыми они обладают в изначальном состоянии, но и их стойкостью, обеспечивающей срок эксплуатации, как отдельного изделия, так и сооружения в целом.

Свойства строительных материалов условно делят на:

  • механические;
  • физические;
  • химические и технологические.

Ниже дана наглядная схема с указанием перечня конкретных свойств, по которым нужно сравнивать и выбирать стройматериалы.

Механические свойства

Механические свойства отражают поведение строительных материалов под воздействием различного вида нагрузок (сжимающих, растягивающих, изгибающих и т.п.).

Механические воздействия вызывают некоторые деформации. В случае, когда внешние нагрузки невелики, деформации вызванные ими, являются упругими, так как после того как нагрузки снимаются, материал возвращается к прежним размерам.

При достижении внешнего воздействия значительной величины помимо упругих деформаций появляются пластические, которые приводят к необратимым изменениям, а при достижении определенной предельной величины материал начинает разрушаться.

В зависимости от поведения под нагрузкой стройматериалы подразделяются на:

  • пластичные – те, которые изменяют форму без появления трещин, а после снятия нагрузки сохраняют измененную форму. Они, как , имеют однородную структуру и состоят из крупных молекул, способных смещаться относительно друг друга (органические вещества) или из кристаллов с легко деформируемой кристаллической решеткой (металлы);
  • хрупкие – они хорошо сопротивляются сжатию и гораздо хуже (в 5-50 раз) растяжению, удару, изгибу. К хрупким материалам относятся: природный , бетон, стекло, гранит.

Ниже дан перечень механических свойств, определяемых для разных видов стройматериалов:

1. Прочность — характеризуется пределом прочности – отношение нагрузки, влекущей разрушение материала, к площади сечения. В зависимости от вида воздействующих сил различают:

  • предел прочности на сжатие (растяжение) – определяется как отношение разрушающей нагрузки к площади поперечного сечения образца до испытания. Единица измерения МПа (кгс/см 2);
  • предел прочности на изгиб – единица измерения также МПа (кгс/см 2).

Шкала твердости Мооса

При выборе строительных материалов руководствуются тем, что допускаемые в конструкциях напряжения на прочность должны составлять только часть их предела прочности. Иными словами должен быть некоторый запас прочности.

Запас прочности необходим из-за неоднородности строения строительных материалов и невозможности учета многократного переменного действия нагрузки, старения материалов и т.п. Обязательный запас прочности устанавливается в СНиПах и других строительных нормативах в зависимости от вида материала, его использования, долговечности строящегося здания.

2. Твердость - способность вещества сопротивляться проникновению в его поверхность иного более твердого тела правильной формы. Есть несколько методов определения твердости:

  • твердость каменных материалов и стекла – оценивают по шкале твердости Мооса, которая состоит из 10 минералов, расположенных по возрастанию их твердости: за 1 берут тальк или мел, а за 10 — алмаз. Показатель твердости испытуемого вещества находится между показателями 2 соседних материалов, из которых один чертит, а другой сам чертится испытуемым веществом;
  • твердость пластмасс и металлов – рассчитывается: по диаметру отпечатка от вдавливаемого стального шарика (это метод Бринелля); по глубине погружения алмазного конуса под действием нагрузки (это метод Роквелла); площади отпечатка алмазной пирамиды (метод Виккерса).

Показатель твердости важен при выборе материалов, используемых в конструкциях, подвергающихся износу и истиранию: дорожные покрытия, полы и т.п.

3. Истираемость - величина потери первоначальной массы материала, отнесенной к единице площади истирания. Сопротивление истираемости учитывают для строительных материалов полов, лестничных ступеней, дорожных покрытий.

4. Сопротивление удару — характеризуется количеством работы, требуемой для разрушения образца, отнесенным к единице объема. Применяется для материалов покрытия полов в цехах заводов и фабрик.

5. Износ - разрушение материалов, возникающее при одновременном воздействии истирающих и ударных нагрузок. Определяется для материалов покрытия дорог, полов заводов, аэродромов.

Физические свойства

Строительные материалы имеют следующие физические свойства:

  • общефизические;
  • гидрофизические;
  • теплофизические;
  • акустические.

Общефизические характеристики:

1. Плотность:

- истинная плотность (р) – масса единицы объема вещества, находящегося в абсолютно плотном состоянии, без пустот, пор и трещин. Единица измерения – кг/м 3 .

За единицу условно берут плотность при температуре 4 0 С. Большинство строительных материалов имеют истинную плотность больше единицы:

  • для каменных материалов – 2200-3300 кг/м 3 ;
  • для органических (битумы, пластмассы, дерево) – 900-1600 кг/м 3 ;
  • для черных металлов (сталь, чугун) – 7250-7850 кг/м 3 .

- средняя плотность (р ср) – масса единицы объема материала в естественном состоянии, включая пустоты и поры. Единица измерения – кг/м 3 . Средняя плотность отражает показатели прочности. При одном и том же составе материал тем прочнее, чем выше его плотность.

Средняя плотность стройматериалов колеблется от 10 кг/м 3 ( воздухонаполненная мипора) до 2500 кг/м 3 (тяжелый бетон) и 7850 кг/м 3 (сталь). Для пористых материалов средняя плотность меньше истинной, а для абсолютно плотных (лаки, краски, стекла, металлы) — эти показатели равны.

- насыпная плотность (р н) – определяется для насыпных стройматериалов и означает массу единицы объема сыпучих материалов в свободном насыпном состоянии (без уплотнения).

2. Пустотность - процент объема пустот в общем объеме. Используется для песка, керамзита, при изготовлении бетона.

3. Пористость:

- общая (полная) пористость (П п) – рассчитывается по величине истинной и средней плотности:

П п =(1-р ср /р)*100%.

Общая пористость прочного конструкционного бетона колеблется в интервале 5-10%, кирпича – 25-35%, пенопласта – 95%.

- открытая (капиллярная) пористость (П о) – определяется по водопоглощению материала:

П о =(m 1 -m)/v*100%,

где m – масса в сухом состоянии, m 1 - масса в водонасыщенном состоянии, v – объем образца.

На свойства материала влияет не только показатель пористости, но и размер пор. Так, если количество замкнутых пор увеличивается, а их величина уменьшается, то повышается морозостойкость материала, а его теплопроводность снижается. При наличии крупных пор материал становится неморозостойким, проницаемым для воды, но при этом появляются значительные звукопоглощающие свойства.

Гидрофизические свойства:

1. Гигроскопичность - способность поглощать водяные пары из воздуха, а затем удерживать их. Вычисляется как отношение поглощенной массы влаги к массе сухого материала, выражается в процентах.

При уменьшении размера пор гигроскопичность выше, при этом в случае снижении воздуха поглощенная влага испаряется. Гигроскопичность зависит от состава материала: некоторые из них притягивают молекулы воды и называются гидрофильными – бетон, стекло, древесина, кирпич; другие отталкивают и называются гидрофобными – полимерные стройматериалы, .

2. Водопоглощение – способность впитывать и удерживать воду. Показывает количество воды, поглощенной веществом, высушенным до постоянной массы и полностью погруженным в воду. Зависит от объема и природы пор (замкнутые или открытые), а также гидрофильности материала. Водопоглощение гранита 0,02-0,7%, тяжелого бетона – 2-4%, кирпича 8-15%. При насыщении водой стройматериалы меняют свои свойства: увеличивается их средняя плотность, объем и теплопроводность, а прочность снижается.

3. Водостойкость – характеризуется коэффициентом размягчения — отношение предела прочности при сжатии материала, насыщенного водой, к пределу прочности при сжатии в сухом состоянии. Коэффициент равен единице для металла и стекла, нулю для гипса и глины.

Материалы, у которых коэффициент водостойкости > 0,8 – считаются водостойкими, а если < 0,8, то неводостойкие и их нельзя применять в конструкциях, подвергающихся постоянному воздействию воды, например, дамбы, плотины, а также фундаменты при высоком уровне грунтовых вод.

4. Влагоотдача – способность отдавать влагу при снижении влажности воздуха. Для характеристики строительных материалов используют влагоотдачу в естественных условиях, т.е. интенсивность потери влаги при температуре 20 о С и относительной влажности воздуха 60%.

5. Водопроницаемость – способность пропускать воду под давлением. Оценивается по значению коэффициента фильтрации, равного количеству воды, просочившемуся в течение 1 часа через 1 кв.м. площади материала при постоянном давлении. Показатель важен при строительстве гидротехнических сооружений, резервуаров, стен подвалов при высоком уровне грунтовых вод.

6. Водонепроницаемость – характеризуется величиной, обратной коэффициенту фильтрации. Обозначается маркой W2, … W12, отражающей одностороннее гидростатическое давление в МПа (0,2; … ;1,2), при котором материал не пропускает воду.

Если через строительный материал проникают газообразные продукты, то контролируют газопроницаемость, если воздух – воздухопроницаемость, пар – паропроницаемость.

При выборе строительных материалов для стен, покрытий зданий и защиты фасадов важны показатели паро- и воздухопроницаемости. Они должны быть дышащими, т.е. свободно пропускать пар из помещения, чтобы избежать повышения влажности. Учет воздухопроницаемости важен и при возведении наружных стен, и если она высокая, как, например, у крупнопористого бетона, то поверхность необходимо штукатурить для предотвращения продуваемости.

7. Морозостойкость – способность материала сохранять свою прочность при многократном попеременном замораживании в водонасыщенном состоянии и оттаивании в воде. Материал способен выдерживать морозное разрушение за счет наличия в его структуре замкнутых пор, в которые отжимается часть воды при кристаллизации льда. Марка морозостойкости строительных материалов обозначается F и показывает число циклов замораживания-оттаивания, которые способен выдержать материал без снижения прочности на 5-25% и массы на 3-5% в зависимости от назначения стройматериала: F50…F500 для тяжелого бетона; F25…F500 для легкого бетона; F15…F100 для кирпича, стеновых керамических камней.

8. Воздухостойкость - способность выдерживать многократное увлажнение и высушивание в течение длительного периода времени без потери механической прочности и деформаций. В таких условиях работают надводные части гидротехнических сооружений, дорожные покрытия и т.п.

Теплотехнические свойства:

1. Теплопроводность – способность пропускать тепловой поток в условиях разных температур поверхности изделия. Характеризуется коэффициентом теплопроводности, равному количеству тепла, проходящего через стену толщиной 1 м площадью 1 кв.м. за 1 час при разности температур противоположных поверхностей стены 1 К, единица измерения – Вт/(м*К).

Теплопроводность зависит от вида материала, его строения, характера его пористости, влажности и температуры. При волокнистом строении материала, тепло вдоль волокон передается быстрее, чем поперек. Крупнопористые стройматериалы имеют большую теплопроводность, чем мелкопористые. При наличии в материале замкнутых пор теплопроводность меньше, чем при наличии сообщающихся пор. Вода в порах повышает теплопроводность, а при замерзании воды в порах теплопроводность повышается ещё больше.

Измерение теплоемкости

2. Теплоемкость - способность поглощать тепло при нагревании. При охлаждении материалы отдают тепло, а скорость отдачи тем больше, чем выше теплоемкость. Коэффициент теплоемкости равен количеству тепла, необходимому для нагревания 1 кг строительного материала на 1 К, единица измерения – кДж/(кг*К).

Значение теплоемкости: неорганических строительных материалов (кирпич, бетон, природные камни) изменяется в пределах 0,75-0,92 кДж/(кг*К); древесины – 2,72 кДж/(кг*К). Так как вода обладает наибольшей теплоемкостью – 4 кДж/(кг*К), повышение влажности стройматериала влечет рост его теплоемкости.

3. Термостойкость – способность выдерживать без разрушения определенное количество резких колебаний температуры. Свойство определяется для огнеупорных и теплоизоляционных стройматериалов. Единица измерения – количество теплосмен.

4. Жаростойкость – способность выдерживать без нарушения сплошности и нарушения прочности температуру до 1000 о С.

5. Огнеупорность – способность выдерживать без разрушения и деформаций длительное воздействие высоких температур. В зависимости от показателей огнеупорности строительные материалы подразделяют на: огнеупорные – работающие без снижения свойств при температуре большей 1580 о С; тугоплавкие – 1580-1350 о С; легкоплавкие – менее 1350 о С.

6. Огнестойкость – способность в течение определенного времени сопротивляться действию огня при пожаре. В зависимости от категории здания по пожаробезопасности СНиПы устанавливают к конструктивным строительным материалам определенные требования по огнестойкости.

Оценка показателя осуществляется в зависимости от показателя возгораемости, основанного на 3 признаках предельного состояния: потеря , сплошности и теплоизолирующих свойств. Предел огнестойкости характеризуется временем в часах с начала теплового воздействия и до возникновения одного из признаков предельного состояния. При этом стройматериалы делятся на:

  • несгораемые – кирпич, бетон, сталь, природные камни;
  • трудносгораемые – фибролит, асфальтобетон, некоторые полимеры. Эти материалы воспламеняются с трудом, тлеют/обугливаются, а после удаления огня горение и тление прекращаются;
  • сгораемые – битум, древесина, полимеры. Они загораются от огня, а горение продолжается даже после ликвидации источника огня.

Акустические свойства:

1. Звукопоглощение - способность поглощать шумовой звук. Определяется по величине коэффициента звукопоглощения, равного отношению количества поглощенной звуковой энергии к общему количеству звуковой энергии, попадающей на поверхность строительного материала в единицу времени.

Материал является звукопоглощающим, если у него коэффициент звукопоглощения больше 0,2. Такие материалы обладают открытой пористостью или шероховатой, рельефной поверхностью, поглощающей звук.

2. Звукоизоляция – способность ослаблять ударный звук, передающийся через строительные конструкции дома из одного помещения в другое.

3. Виброизоляция и вибропоглощение – предотвращение передачи вибрации от механизмов и машин к строительным конструкциям зданий.

Химические свойства

Химические свойства отражают способность строительного материала к химическому взаимодействию с другими веществами и определяются следующими показателями:

  • химическая активность;
  • химическая или коррозийная стойкость;
  • растворимость;
  • способность к адгезии и кристаллизации.


1. Химическая активность.
Различают положительную и отрицательную химическую активность:

  • положительная – в процессе взаимодействия происходит упрочнение структуры вещества. Например, образование гипсового, цементного камня;
  • отрицательная – когда реакция взаимодействия вызывает разрушение материала – например, коррозия под действием кислот, солей, щелочей.

2. Адгезия — соединение жидких и твердых стройматериалов по поверхности, обусловленное межмолекулярным воздействием. В результате получаются многокомпонентные строительные материалы, например, железобетон, прочность которого обеспечивается монолитным соединением арматуры и заполнителей бетона с цементным камнем за счет адгезии.

3. Растворимость - способность материала образовывать с органическими растворителями или с водой однородные системы (растворы). Растворимость зависит как от состава самого вещества, так и от температуры, от давления.

Показатель растворимости вещества называется произведением растворимости (ПР), которое отражает предельное содержание растворенного вещества в граммах на 100 мл при нормальном давлении и заданной температуре.

4. Кристаллизация - процесс, при котором образуются кристаллы из паров, расплавов, растворов при химических реакциях и электролизе. В процессе кристаллизации выделяется тепло.

Растворение и кристаллизация – основные процессы для получения искусственных каменных строительных материалов на основе , извести, гипса.

5. Коррозийная (химическая) стойкость - способность стройматериала противостоять разрушению под воздействием агрессивных сред. Химическая стойкость оценивается по значению коэффициента, рассчитываемому как отношение прочности (массы) материала после коррозийного воздействия к прочности (массе) до проведения испытаний. Если значение коэффициента составляет 0,9-0,95, то вещество признается химически стойким к исследуемой среде.

Органические строительные материалы (битумы, древесина, пластмассы) при обычной температуре достаточно стойки к воздействию щелочей и кислот средней и слабой концентрации.

Стойкость неорганических строительных материалов к коррозии зависит от их состава.

В видео показан процесс проведения испытаний для определения свойств бетона:

Что еще почитать