Как прорастают растения в космосе. Космическое питание будущего – выращивание еды в космосе

54 года назад, 12 апреля 1961 года Юрий Алексеевич Гагарин – первый космонавт Земли, совершил первый в мире полет в космос на корабле «Восток». Наш космонавт очень интересовался цветами. А какие цветы он любил больше всего, вы узнаете из подборки любопытных фактов дуэта «растение и космос».

Интересные факты о растениях и космосе:

  1. В 1980 году на борт космической станции «Салют-6» были отправлены тюльпаны. Ученые предполагали, что цветы зацветут в космосе. К сожалению, тогда чуда не случилось – тюльпаны завяли на следующий день. По возвращении из полета, космонавт В. Ляхов отчаянно произнес: «Судя по всему, в космосе никто жить не может!». Но Герои Советского Союза тоже могут ошибаться.
  2. Но космонавты, вооружившись терпением, продолжили исследования. Иначе как можно исследовать такую глубину, как космос? И, надев цветочные скафандры, в космос отравились . Они продержались в суровых условиях космоса целых полгода! Даже образовались новые листочки и воздушные корни. Однако цветы опали сразу же по прибытию в космос.
  3. Арабидопсис (Arabidopsis Thaliana) – Гагарин среди цветов. Он побывал в космосе в 1982 году. Арабидопсис расцвел и даже дал семена в условиях полного отсутствия гравитации.
  4. А Юрию Алексеевичу по нраву были ромашки. Согласитесь, скромные маленькие солнышки замечательно характеризуют их поклонника: такой же скромный и лучезарный.
  5. Интересно, а на ромашки растут? Если растут на Марсе, то они там синего или фиолетового цвета от листьев до корней. А если на , то желтого или оранжевого.
  6. В космосе цветы и пахнуть будут иначе, чем на Земле. Аромат цветка зависит от многих условий. И некоторые умело этим пользуются. Запахи различных видов роз, выращенных на космическом корабле Дискавери, дали основу для духов «Zen» от Shiseido.
  7. Деревья тоже хотят в космос! В 2004 году бонсай-сосна отправилась на воздушных шарах бороздить просторы Вселенной. Эта идея пришла в голову японскому художнику, который совместно с компанией, запускающей в полет космические корабли, ее и осуществил. За компанию с сосной полетел большой цветочный букет. Эта великолепная композиция летала на высоте 30 километров над Землей.
  8. Оказывается, есть цветок, который тесно связан с неизведанным космосом, но при этом, он никуда и не думал летать. Этот цветок – космос. Во-первых, он так и называется. Во-вторых, он такой же загадочный и манящий. Шоколадный космос (Chocolate Cosmos) долгое время считался исчезнувшим. Но, к счастью, предусмотрительные биологи начала XX века успели собрать семена с последнего экземпляра этого неуловимого растения. Цветок в буквальном смысле хочется съесть – он имеет ярко выраженный запах шоколада.
  9. За растениями для разработки новых лекарств – в космос! Клетки женьшеня, прожив 75 дней на МКС, стали более продуктивными и эффективными. Осталось только сохранить эти чудесные свойства, чтобы создавать волшебные пилюли от всех болезней.
  10. Канадские ученые разработали «Лунный оазис». Это своего рода переносной парник, в котором учтены все условия для выращивания различных культур и растений. В будущем они надеются отправить парник на Луну, чтобы проверить работоспособность оазиса. По словам разработчиков, это позволит обеспечивать свежими фруктами и овощами будущих переселенцев с Земли.
  11. Похожие исследования ведут и российские ученые. Еще с конца 90-х годов они трудятся над созданием космической оранжереи. На МКС есть оранжерея «Лада», в которой выращивают картофель, редис, ячмень и др. Однако целей преследуют много: от чисто научных интересов до снятия стресса космонавтов во внеземных условиях.
  12. Японские ученые совместно с индийскими проводят исследования в условиях микрогравитации. «Космические умы» этих стран хотят проследить изменения биологических функций растений. Для начала выращивать будут обыкновенные водоросли. Посмотрим, может и суши можно будет поесть в космическом ресторане?

Растения, полученные благодаря космической программе, могут удивить, поразить и доставить эстетическое наслаждение.

В своем стремлении к освоению космического пространства человек уделял внимание не только проектированию космических кораблей, но и необходимости адаптации растений к новым условиям существования. Не удивительно, что появилась такая отрасль как космоботаника, а первое живое растение полетело на орбиту гораздо раньше человека.

Зарождение и развитие космоботаники

Роль «комического огорода» гораздо важнее, чем может показаться на первый взгляд и это точно не плод безумной фантазии ученых. Огромную роль растений отметил в своих трудах еще К. Э. Циолковский, который понимал, что только растения смогут помочь человеку в длительных космических полетах, а также обеспечить дыхание и питание в орбитальных сооружениях. Около 100 лет назад, в далеких 1915-1917 гг., Ф. А. Цандер попытался создать первую «оранжерею авиационной легкости» и это было только начало…

Должное внимание космическим экспериментам с растениями уделял и С. П. Королев, под руководством которого в 1960 году полетели в космос первые растения, и что особенно важно, успешно вернулись на землю. Первыми «космонавтами» от мира растений стали хлорелла, традесканция, семена кукурузы, пшеницы, лука и гороха. Растения путешествовали в космос на всех биоспутниках серии «Космос», орбитальных станциях и космических кораблях. Существовала программа агротехнических и ботанических исследований в космосе. В ходе исследований нужно было не только изучить влияние новых условий на растения, но и получить обратимые посевы длительного существования и, естественно, «комические урожаи».

В эпоху первых проб и ошибок для выращивания растений были оборудованы специальные установки под названием «Оазис», которые обеспечивали необходимой освещение, проветривание и увлажнении, ведь осуществить полив привычным для нас способом невозможно, да и движение воздуха не происходит. Такие установки должны были помочь в преодолении особенностей характерных для комического пространства.

Космические семена

Хотя растения и сопровождали человека в его космических полетах и даже неплохо росли, чем очень радовали космонавтов, поднимая их моральный дух, но все же в космосе им было тяжеловато, часто гораздо тяжелее, чем человеку. Зеленые всходы и вегетативную массу получать удавалось, но ведь замкнутый цикл заключается не в этом. Необходимо было получить цветы и семена.

Скептики говорили, что цветы и семена не главное, вполне достаточно и зеленой массы. Ведь семена достаточно легковесны и долго хранятся, так что можно и с Земли привезти в случае необходимости. Существовали и оптимисты, которые утверждали, что необходимо просто подобрать нужный подход и «космические семена» рано или поздно появятся.

Геотропизм и отсутствие земного притяжения отрицательно сказывались на развитии. Растения упорно не желали цвести. Даже привезенные тюльпаны с бутонами не захотели раскрываться в условиях невесомости. И тут ученые обратили свой взор к экзотическим орхидеям. Конечно, с агрономической точки зрения от них можно ждать только эстетического наслаждения, но ведь не зря их называют «дочерями воздуха». Исследователи думали что адаптация к эпифитному способу существования будет полезна и в космосе. К сожалению, доставленные на орбиту цветы осыпались, хотя сами растения продолжали наращивать вегетативную массу.

Реальность оказалась как всегда где-то посредине. Главным «комическим цветком» стало скромное растение из семейства Бобовые – арабидопсис. На станции «Салют-7» космонавтам А. Березовому и В. Лебедеву в 1982 году с помощью установки «Фитон» удалось не только заставить зацвести арабидопсис, но и собрать первые космические семена. Конечно, это растение является одним из самых неприхотливых в обычных земных условиях, но для космоса это настоящее достижение.

Помощь из космоса, или чудеса космической селекции

Нет такого садовода или огородника, которого не обрадует плод гигантского размера. Конечно, для выращивания рекордсмена придется приложить немало усилий, но найдутся люди, которые заподозрят вмешательство пришельцев и помощь из космоса. Эти утверждения покажутся фантастическими и даже смешными по отношению к обычным культурам, но если идея витает в воздухе, её кто-то обязательно осуществит.

Ловя идею в гонку по космической селекции включились китайцы, ведь продовольственная проблема у этой нации стоит очень остро и «космические овощи» будут как нельзя кстати. Китайские ученые, начиная с 2001 года, отправляли в космос семена различных растений, которые, подвергнувшись космическому облучению, снова попадали на землю и высевались на специальных селекционных плантациях. Объемы семян, которые доставлялись на орбиту, были очень существенные. В 2006 году Китай запустил первый исключительно сельскохозяйственный спутник с 2 000 семян. И вот спустя год появились в продаже первые космические овощи. Космическая селекция позволила получить новые сорта сельскохозяйственных культур, которые превышали по показателям плодоношения привычные земные сорта.

Гораздо замысловатее подошли к космической селекции американцы. На орбиту они отправили семена первых трансгенных томатов, которые благодаря изменениям в геноме не должны были отрицательно реагировать на отсутствие гравитации. Космическй эксперимент не удался и выращенные в космосе растения погибли, но зато из вернувшихся на землю семян получились прекрасные растения с достаточно необычными свойствами.

Если свойства космических овощей изучены недостаточно, то новые декоративные растения, полученные благодаря космической программе, могут удивить, поразить и доставить эстетическое наслаждение. Стоит упомянуть о программе Optimara Space Violet, посвященной выведению космических фиалок. Семена узамбарских фиалок провели на космической орбите долгие 6 лет и, как оказалось, не напрасно. В результате были получены сорта с большим количеством цветов и цветоносов (до 20 одновременно), которые способны цвести практически непрерывно.

Наверняка пройдет совсем немного времени и космическими мы станем называть растения обитающие в Лунной оранжерее, а не просто однажды побывавшие в космосе.

Номинация

Эксперимент в космосе

РАСТЕНИЯ В КОСМОСЕ

Сергеева Анастасия

Средняя общеобразовательная школа №6

Научный руководитель:

учитель физики

СОШ № 6 г. Шумерля

г. Чебоксары, 2010

Основополагающий вопрос:

Насколько важно выращивать в космосе растения и строить для них теплицы, оранжереи?

Цель: Узнать о поведении наших «зеленых братьев» в космосе.

Задачи:

Изучить мнение ученых, космонавтов о строительстве в космосе теплиц и оранжерей; Узнать о современных возможностях создания теплиц и оранжерей в космосе; Составить собственное рассуждение на эту тему и сформулировать выводы.

Методы исследования:

1. Поиск и сбор материала (Книги, Интернет-ресурсы, фотоматериалы).

2. Свой эксперимент с выращиванием фасоли;

3. Оформление исследовательской работы.

Полученный результат:

Исследовательская работа,

Введение……………………………………………………………………………………………….3

Основная часть:

«Лада» - маленькая, да удаленькая………………………………………………..............................4

Надежды и разочарования…………………………………………………………………………....5

Поиски ведут к успеху………………………………………………………………………………..6

К внеземным оранжереям будущего………………………………………………………………...7

Не только полезно выращивать растения, но и выгодно!................................................................7

Мутаций нет…………………………………………………………………………………………...8

Как много значит для человека природа, общение с ней!..............................................................10

Практическая часть. Эксперимент с фасолью…………………………………………………10

Заключение………………………………………………………………………………………….11

Библиографический список…………………………………………………………………….....11

Приложения………………………………………………………………………………………….12

Введение

Еще показал необходимость использования высших растений в качестве средства, призванного обеспечить дыхание и питание людей в длительных внеземных полетах. В трудах гениального ученого мы находим первые «технические условия» на создание космических оранжерей и жилых орбитальных сооружений с замкнутым экологическим циклом. А еще в 1915-1917 годах в своей московской квартире начал ставить эксперименты по созданию, как он говорил, оранжереи авиационной легкости. Во второй половине ХХ в. биология вышла за пределы земных проблем: биологические исследования стали проводиться и в космосе. То, о чем мечтали теоретики космонавтики, стало претворяться в жизнь под руководством. Эксперименты по воздействию факторов космического полета на растительные объекты начались в 1960 году на втором космическом корабле-спутнике. Тогда совершили свой полет и успешно возвратились на Землю традесканция, хлорелла, семена различных сортов лука, гороха, пшеницы, кукурузы. Культуры хлореллы летали в космос и на пилотируемом космическом корабле «Восток-5». После этого растительные организмы путешествовали в космос на всех наших космических кораблях, орбитальных станциях и биоспутниках серии «Космос». В 1962 году Главный конструктор наметил целую программу ботанических и агротехнических исследований в космосе и вскоре по инициативе Главного конструктора в Красноярске появился экспериментальный замкнутый биотехнический комплекс «Биос». Длительное время испытатели обеспечивались в нем кислородом, растительной пищей и водой за счет систем жизнеобеспечения с участием высших растений и микроводорослей.

Итак, выращивание растений - очень важный шаг в космонавтике. И в дальнейшем он поможет освоить другие планеты Солнечной Системы, а может, и всей Галактики. Люди смогут в будущем жить вне Земли.

«Лада» - маленькая, да удаленькая

В лаборатории биологических систем жизнеобеспечения Института медико-биологических проблем (ИМБП) разработали космическую тепличку – «Ладу», рассчитанную на 60 Вт, стоящую 50 тысяч долларов. if(docid!=221589){toggleElement("anons221589");} Глядя на маленькую, размером с микроволновку установку, дилетанту не понять, во что там вложены такие деньги. "Лада" состоит из собственно теплицы, снабженной двумя мини-компьютерами, блоками выращивания, емкостей для воды. Первым на борту МКС зацвел зеленый японский салат Мизуна. Сотрудник лаборатории, доктор биологических наук Маргарита Левинских выбрала растение из сотен других за неприхотливость, быстроту роста, вкусовые качества и большое содержание витаминов . Салат оправдал доверие: на борту МКС он пользуется огромным успехом. Командир российского экипажа Валерий Корзун, первым снявший дегустацию космического растения, признался, что готов был съесть весь кустик.

Подобные эксперименты российские специалисты проводят уже не первый год. На борту станции "Мир" в оранжерее "Свет", например, длительное время росла пшеница. Были планы продолжить опыты на других злаковых. Космонавты даже шутили, что скоро будут печь хлеб в космосе… Увы, уникальная аппаратура "Мира" погибла в океанских водах, однако опыт работы остался. Он и был использован при разработке "Лады".

"Это живой, постоянно развивающийся эксперимент, - рассказывает ведущий научный сотрудник лаборатории, кандидат технических наук Игорь Подольский. - По возможности мы будем досылать на МКС новые корневые модули, менять освещение, саму программу… Таким образом, собираемся исследовать влияние факторов космического полета на рост и развитие растений, отрабатывать технологии их культивирования в условиях космического полета. Ведь там все иначе, чем на Земле".

Возникает вопрос: а зачем вообще все это нужно? Разве на родной планете мало заброшенных полей, где можно выращивать тот же салат или горох не крошечными кустиками, а целыми плантациями?

"Если мы сочтем целесообразным освоение человеком космического пространства, то признаем и важность создания биологических систем жизнеобеспечения, - говорит Подольский. - Люди без растений долго не протянут. Чтобы длительно существовать вне Земли, нужны "зеленые братья". Это и пища, и мощный психологический фактор. Если среди металла на борту станции теплится маленький зеленый кустик, космонавт не так тоскует по дому. Кроме того, это тест на состояние окружающей среды: известно, что растения более ранимы к внешним факторам, чем животные. На станции "Мир" пшеница долго плохо росла. Причина выяснилась случайно: на станции появились установки по сжиганию метана, а заодно с ним снизилось содержание в воздухе этилена, - растение вдруг вовсю заколосилось. Космонавты не чувствовали повышенного содержания этих веществ, а вот пшеница хворала".

Маргарита Левинских считает, что растения каким-то образом улавливают эмоциональную информацию из внешнего мира. А в космосе человек и растения становятся более привязанными друг к другу.

Связь с живой природой помогает оставаться людьми даже вдали от голубой планет. Все как у Маленького принца Экзюпери, который нежно любил свою розу, думая, что она - единственная на целом свете. Для него так оно и было, хотя вдали, на другой планете, росли целые сады таких же роз". Существует мнение, что "космические семена" приобретают необычайные лечебные и питательные свойства, могут исцелить тело и душу человека. "На самом деле подобной информацией мы пока что не располагаем, - говорит Подольский. - Хотя, возможно, в недалеком будущем откроются не менее фантастические перспективы. Американские ученые уже пытаются создавать наземные модули оранжерей для выращивания растений на других планетах. Есть подобные разработки - правда, пока на бумаге - и у российских ученых. Так что, похоже, мечты отца отечественной космонавтики Константина Циолковского о космических поселениях когда-нибудь сбудутся.

Надежды и разочарования

В 1971 году на корабле «Союз-10» за пределы Земли отправилась установка «Вазон» с двумя тюльпанами. Но, к сожалению, стыковки со станцией «Салют» не произошло, распустившиеся цветы могли наблюдать уже на Земле лишь специалисты группы поиска.

На орбитальной станции «Салют-4» стоял довольно совершенный «Оазис», снабженный телеметрической и кинорегистрирующей системами. Исследования велись с горохом.

Поначалу многое не ладилось, - рассказывает космонавт Георгий Гречко.

Вода не поступала туда, куда было нужно, затем стали срываться огромные капли, и за ними пришлось гоняться с салфетками. Но в целом эксперимент удался, были получены взрослые, двадцатитрехдневные растения. Правда, цветов не было, но фильм с замедленной съемкой динамики роста растений снять удалось. Именно Гречко одним из первых свидетельствовал о психологической поддержке, которую космонавты получали у растений. Сам он, особенно к концу полета, старался при каждом удобном поводе подплыть к оранжерее, чтобы лишний раз бросить взгляд на зеленых друзей. Иногда он ловил себя на том, что делает это неосознанно.

Проведенный на Земле анализ показал, что, несмотря на внешнее сходство с контрольными, растения отличались по структуре клеток, биохимическому составу, ростовым характеристикам. Это, казалось, подтверждало скепсис тех ученых, которые и до того уже сомневались в возможности нормального роста растений в условиях невесомости. Дальнейшие эксперименты по культивированию растений в длительных космических экспедициях тоже не принесли ничего утешительного. У пшеницы и гороха никак не удавалось получить не только семян, но даже цветов. На стадий их образования растения просто погибали. И этот факт давал основание говорить о принципиальной невозможности роста и развития растений в условиях космического полета. Тогда-то к решению проблемы и подключились опытные научные коллективы , возглавляемые академиком, академиком АН Литовской ССР и академиком АН Украинской ССР. Прежде всего решили выяснить, влияет ли тут именно невесомость или же другие факторы, например, технология культивирования. Ведь сама эта технология для столь необычных условий еще только создавалась. А на нее-то невесомость оказывала явное влияние. Ведь при отсутствии гравитации водо - и газообмен у растений происходит по-иному, возникает проблема отвода метаболитов и обеспечения нужного теплового режима, поскольку естественная конвекция тоже отсутствует. Вновь попытались вернуться к культивации растений, в лукавицах которых сосредоточен почти полный запас необходимых для развития веществ.

Летом и осенью 1978 года во время полета космонавты В. Коваленок и А. Иванченков выращивали лук двумя способами: научным и, «как в деревне Белой», откуда был родом командир корабля.

Лук растет в двух сосудах, один по вашей методике, а другой по моей, крестьянской, - докладывал В. Коваленок. - Если его сверху не обрезать, то он начинает гнить, а если подрезать, растет хорошо, не гниет. В репортаже по телевидению командир шутил: «Сельхозтехника лучше работает, это мы проверили в результате соцсоревнования. Наш лучок-то растет быстрее, чем научный!» Но увы, ни по той, ни по другой методике строптивое растение до цветения довести так и не удалось.

На следующий год в Главном ботаническом саду АН СССР в установке под названием «Лютик» подготовили для выгонки на борту станции «Салют-6» тюльпаны. Им оставалось только распуститься в космосе, но этого-то они и «не захотели» сделать. Почему - понять до сих пор не удалось. Аналогичная установка почти в то же время побывала на Северном полюсе. И когда там появилась лыжная экспедиция под руководством И. Шпаро, тюльпаны порадовали отважных путешественников ярким пламенем своих цветов.

Поиски ведут к успеху

Но почему же растения так и не цветут? Чтобы ответить на этот вопрос, во время последних экспедиций на «Салюте-6» и на новой станции «Салют-7» было проведено много экспериментов с целым набором оригинальных устройств для культивирования растений. Вот их перечень: малая орбитальная оранжерея «Фитон» на борту станции «Салют-7», где впервые арабидопсис прошел полный цикл развития и дал семена, малая орбитальная оранжерея «Светоблок», в ней на борту станции «Салют-6» арабидопсис впервые зацвел, бортовая оранжерея «Оаэис-1А» станции «Салют-7», бортовая установка «Биогравистат» с вращающимися и неподвижными дисками для экспериментов по проращиванию семян в условиях искусственной силы тяжести. Конструкторы и ботаники предусмотрели систему дозированного полуавтоматического полива, аэрации и электростимулирования корневой зоны, смены перемещения вегетационных сосудов с растениями относительно источника автономного освещения.

Нужно было помочь растениям справиться с невесомостью. Прежде всего в «Оазисе» попытались применить стимуляцию электрическим полем. При этом исходили из предположения, что геотропическая реакция связана с биоэлектрической полярностью тканей, вызванной электромагнитным полем Земли. В космических экспериментах это предположение подтвердилось лишь частично.

Исследования велись и в других направлениях. Например, проростки некоторых растений выращивались на небольшой центрифуге «Биогравистат». Она создавала на борту корабля постоянное ускорение до 1 g. Оказалось, что в физиологическом смысле центробежные силы адекватны силе тяжести. В центрифуге проростки отчетливо ориентировались вдоль вектора центробежной силы. В стационарном блоке, напротив, наблюдалась полная дезориентация всходов.

А в устройстве «Магнитогравистат» изучалось ориентирующее действие другого фактора - неоднородного магнитного поля. Его влияние на проростки креписа, льна, сосны тоже компенсировало отсутствие гравитационного поля. Словом, упорству исследователей можно было позавидовать. Наконец, пришел успех. И выпал он на долю маленького, невзрачного растения арабидопсиса. Имея цикл развития всего около 30 дней, оно прекрасно растет на искусственных почвах. Во время последней экспедиции на «Салюте-6» арабидопсисы зацвели в камере установки «Светоблок». На станции «Салют-7», где работали А. Березовой и В. Лебедев, эксперимент по культивированию арабидопсиса подготовили особенно тщательно. Там была герметичная камера «Фитон-3» с пятью кюветами и своим . В кюветах - субстрат из агара, содержащий до 98% воды. По мере роста растений они могли отодвигаться от источника света. Семена с помощью сеялки-пушки посеяли сами космонавты. Вначале растения росли медленно. Но вот 2 августа 1982 года В. Лебедев сообщил:

Появилось много, много бутонов и первые цветы. Прибывшей на станцию Светлане Савицкой космонавты вручили небольшой букетик из цветов арабидопсиса. Она тщательно зарисовала его. При подсчете на Земле в стручках обнаружили 200 семян.

Этот опыт опроверг мнение о невозможности прохождения растениями в невесомости всех стадий развития - от семени до семени.

Правда, арабидопсис - самоопылитель, оплодотворение у него происходит еще до раскрытия бутона. Но все же успех огромен. И это успех не только научного коллектива Института ботаники АН Литовской ССР, возглавляемого академиком, но также космонавтов Анатолия Березового и Валентина Лебедева. Теперь можно говорить, что космическое растениеводство родилось практически, и оценивать его перспективы.

К внеземным оранжереям будущего

Вернувшийся из 211-суточного полета Валентин Лебедев на вопрос: - Нужна ли в длительном полете оранжерея? - ответил так: - Без сомнения, нужна. Ухаживая за растениями, ремонтируя и кое в чем совершенствуя ботанические установки, мы поняли, что без растений длительные космические экспедиции невозможны. Перед возвращением на Землю растения просто жалко было вырывать. Вынимали мы их очень осторожно, чтобы не повредить ни одного корешка.

Такие оранжереи, - считает космонавт, - займут целые отсеки внеземных станций. Ведь растениям нужна иная атмосфера, нежели людям, - с повышенным содержанием углекислоты и водяных паров. Наверное, другой должна быть и оптимальная для получения наибольшего урожая температура, а также продолжительность светового дня. А главное - им нужен настоящий солнечный свет.

Делать очень большие иллюминаторы или же целые стеклянные стены пока технически невозможно. Видимо, наряду с некоторым увеличением размеров иллюминаторов следует применить зеркальные концентраторы. Собранный ими и направленный внутрь отсека световой поток можно будет через систему световодов подводить к растениям подобно тому, как к ним подводится влага с питательными веществами. Вот тогда и исполнится предсказание Циолковского о том, что при подборе самых урожайных культур и оптимальных условий для их развития каждый квадратный метр внеземной плантации сможет полностью прокормить одного жителя космического поселения.

Все мы уверены, что так и будет!

Не только полезно выращивать растения, но и выгодно!

Чтобы растение успешно развивалось и давало больше плодов, одной богатой почвы недостаточно. Хорошо известно: чем больше листьев будет освещено солнечными лучами, тем больший урожай принесет растение осенью. Однако в посевах верхние листья, как правило, затеняют нижние, на полях с этим бороться бесполезно, но в теплицах такие попытки делались. Однако раздвигать растения по мере их роста оказалось и трудно, и дорого, поэтому экспериментировать перестали. Но потом об этом вспомнили космические ботаники, которые предложили устраивать внеземные оранжереи не на плоской, а на криволинейной поверхности. На Земле стебли растений, подчиняясь силе тяжести; вытягиваются вверх параллельно друг другу. Их космические собратья развиваются в невесомости, и направление их роста определяется только освещением. Поэтому их можно высаживать на сферические или цилиндрические «поля», окружая светильниками той же формы. Стебли растений в таких оранжереях расположатся по радиусам сферы или цилиндра и сами будут раздвигаться по мере роста. При этом освещенность нижних ярусов листьев и соответственно продуктивность посевов будут намного выше, чем на Земле. Возможность выращивания растений с радиальным расположением стеблей подтверждена в наземном эксперименте. Растения разных видов пшеницы культивировали в установке со сферической поверхностью, вращающейся вокруг трех взаимно перпендикулярных осей со скоростями порядка 2 оборота в сутки. Конечно, по первым опытам трудно судить, как пойдет дело дальше. Предстоит проверить идею в условиях реального космического полета. Но уже сейчас ее авторы подчеркивают, что «применение криволинейных посадочных поверхностей позволяет предложить весьма компактные и технологические конструкции конвейерных оранжерей для космических систем жизнеобеспечения экипажа».

Мутаций нет

На МКС получены ростки третьего поколения гороха, выращенного в орбитальных условиях. Геннадия Падалку журналисты уже называют знатным космическим агрономом. В 1999 году на станции "Мир" он вырастил первые колосья пшеницы. Космический земельный надел невелик, посевные площади до тетрадного листа не дотягивают, это в три тысячи раз меньше дачных "шести соток". Это - земной дублер космической оранжереи. На МКС - точно такая же. Здесь готовят следующий эксперимент, на очереди японская листовая капуста и редис. Главные требования к растениям-претендентам на космический полет - компактность и неприхотливость. Расти придется при скудном освещении и поливе, вода в космосе на строгом учете. Освещение оранжереи и два компьютера, которые следят за ростом растений, употребляют всего-навсего 60 ватт. Раз в неделю космонавты отправляют данные на Землю, вместе с фотографиями плантации. На станции сейчас зацветает уже третье поколение выращенного здесь гороха. Всего шесть растений, на каждом - по три стручка. Немного, но вполне достаточно для того, чтобы уже считать доказанным - в космических условиях растения не становятся мутантами. Эксперимент начался 15 месяцев назад, этого достаточно, чтобы пилотируемый корабль долетел до Марса. Ученые уже могут назвать возможные растения-претенденты.
Фиолетовые цветы заметно оживили интерьер станции.

Как показали земные эксперименты, при круглосуточном освещении растений «Фитоконвейер» может давать до 300 г свежей зелени каждые 4-5 суток, т. е. в 3 раза больше, чем при традиционной компоновке. Разработчики считают, что такая цилиндрическая конвейерная оранжерея перспективна для производства растительной продукции на марсианском корабле или орбитальной станции.

Как много значит для человека природа, общение с ней!

Зеленые растения создают хорошее настроение, отвлекают от однообразных и утомительных текущих дел, успокаивают. Плантация зеленых растений доставит большую радость экипажам космических кораблей и станций. И, не боясь преувеличения, можно предположить, что «ветка сирени» в космосе для человека будет значить гораздо больше, чем на Земле.

В оранжереях будущего растения будут снабжены специальными датчиками и приборами. Они будут не только сообщать о своем состоянии, но с помощью автоматики обеспечивать поступление воды и питательных веществ в необходимых для себя количествах. Они сами смогут регулировать микроклимат всего помещения оранжереи, подбирая наилучшие условия для своего роста. И это вполне реально, так как установлено, что все растения отвечают на изменения окружающих условий токами электрической природы - биотоками. Опыты, проведенные в лаборатории профессора Тимирязевской сельскохозяйственной академии И. Гунара, показали, что изменение температуры в зоне корней растений, а также некоторые химические вещества, воздействующие на корни, вызывают появление слабых биотоков, которые зарегистрированы чувствительными самописцами.

Для отведения биотоков использовались электроды, не травмирующие растения. Было установлено, что здоровые растения тотчас же реагировали на раздражения, на изменение условий, а больные - с задержкой, вяло. Интересно, что при воздействии на корни, например, насыщенным раствором питательных солей ответную реакцию растений в этих же опытах удавалось регистрировать на листьях. Выходит, информация об изменении условий в зоне корня была передана листьям. Значит, растения чувствуют? Вероятно.

В космических оранжереях целесообразно выращивать скороспелые овощные растения. Это однолетние растения - листовая капуста, кресс-салат, огуречная трава, укроп. Эти растения содержат значительное количество витаминов А, В1, В2, PP. В огуречной траве содержится меньше витаминов, чем в других растениях, но зато она обладает целебными свойствами, приятным запахом и вкусом свежих огурцов, что делает ее очень привлекательной для введения в рацион.

Так как в обычных условиях препараты витаминов плохо сохраняются, поэтому целесообразно их постоянно иметь в свежем виде. Значит, необходимо изучать возможности оранжереи обеспечивать потребности экипажа в витаминах в специфических условиях гермообъекта.

Растения оранжереи должны быть неприхотливыми, устойчивыми к заболеваниям и хорошо изученными в обычных условиях.

Практическая часть. Эксперимент с фасолью

На Земле стебли растений, подчиняясь силе тяжести; вытягиваются вверх параллельно друг другу. Их космические собратья развиваются в невесомости, и направление их роста определяется только освещением.

Я решила провести эксперимент с фасолью и наглядно показать, как это происходит. Я взяла семена фасоли, завернула их в мокрую марлю и поместила в стеклянную мензурку(2), при этом я периодически меняла положение мензурки. Через неделю семена проклюнулись(3) и я высадила их в грунт(4). Баночки с посаженными семенами я тоже переворачивала. Позже фасоль проросла(5).

В итоге растение росло и изгибалось во все стороны. Благодаря этой способности растения в космосе могут принести урожая больше чем на земле, вследствие компактности и отсутствия силы тяготения земли.

https://pandia.ru/text/78/432/images/image002_27.jpg" width="200" height="267 src=">

https://pandia.ru/text/78/432/images/image004_15.jpg" width="269 height=192" height="192">

https://pandia.ru/text/78/432/images/image006_14.jpg" width="272 height=192" height="192">

left" width="450 " style="width:337.85pt">

https://pandia.ru/text/78/432/images/image012_6.jpg" align="left" width="794" height="586 src=">

Теплица, которую я готовлю для дальнейших экспериментов

https://pandia.ru/text/78/432/images/image015_4.jpg" width="759 height=500" height="500">

https://pandia.ru/text/78/432/images/image017_2.jpg" align="left" width="696" height="404 src=">

Многие космонавты пробовали выращивать растения на борту космического корабля.Наши кубанцы тоже заботились о зеленых друзьях. Об исследованиях Виктора Горбатко и Фам Туана мы уже писали, а сейчас предлагаем материал о космических растениеводческих опытах Виталия Севастьянова и Анатолия Березового

О первых опытах выращивания гороха космонавтами интересно рассказывает Г.Береговой в книге «Космос — землянам»:

«Человеку свойственно ощущать свою причастность к земной природе, где бы он ни находился. Но когда оказываешься за пределами родной планеты, это воспринимается особенно остро. Обратите внимание, с каким волнением и теплотой рассказывают космонавты о том, как выглядит Земля с высоты орбиты. Ну а если вместе с ними путешествует в безжизненной пустоте космоса кусочек живого мира, то забота о «земляках» становится прямо-таки нежной. Даже когда эти «земляки» — зеленые стебли обыкновенного гороха. Именно его, кстати, выращивали на «Салюте-4» А.Губарев и Г.Гречко, а затем вновь посадили участники следующей экспедиции П.Климук и В.Севастьянов.

На борту космической станции имеется специальная установка для выращивания растений в условиях невесомости — «Оазис». Растениям в нем созданы нормальные условия, а космонавты ежедневно наблюдают за своими зелеными питомцами и заботятся о них.

Не имея надежных данных о том, как влияет невесомость на развитие растений, авторы эксперимента положили зерна в свой «Оазис» как попало (поэтому и первые всходы были неважные: из 36 зерен взошли только 3). На Земле, естественно, корень всегда уходит в почву, вниз, а проросток тянется к свету. А как быть горошине в космосе, где нет ни верха, ни низа? Куда ей прорастать?

Выяснилось, что горошине подсказывает, как быть, не гравитация, а генетически заложенная в нее так называемая полярная ориентация: если проросток направлен к свету, то корень непременно в противоположную сторону. Значит, стоит только помочь горошине — заранее сориентировать ее так, чтобы корешок уткнулся в почву, а проросток направился к свету, — и всходы обеспечены. В ином случае растение погибнет.

Предположение ученых проверяла вторая экспедиция на «Салюте-4». П.Климук и В.Севастьянов захватили с собой на орбиту усовершенствованный «Оазис» и семенной материал. Расположили зерна в соответствии с заданием. И вот на десятые сутки биологи запрашивают космонавтов: как, мол, там растения?

— Все в порядке, — спокойно докладывает В.Севастьянов, — можно собирать урожай — стрелки лука уже достигли 10-15 см.

— Какие стрелки, какого лука? — обомлели сначала на Земле, но быстро спохватились: — Понимаем, это шутка, мы же вам давали горох, а не луковицы.

— Были у нас семена гороха, верно, — сжалился над биологами бортинженер, — но мы прихватили с собой из дома и две луковицы, посадили их, так сказать, сверх плана. А горошины почти все взошли, теперь подрастают. Так что в космосе жить можно.

Однако, дальнейшие опыты с растениями, проведенные в более длительных полетах уже на борту орбитальной станции «Салют-6» принесли ученым немало новых сюрпризов. Тот же горох, вопреки заверениям В.Севастьянова, что в космосе жить можно, почему-то никак не мог там выжить. Раз за разом высаживали его в «огороде над облаками», семена прорастали, растения нормально развивались и … погибали. «Космических» семян никак не получалось, хотя уход за растениями организован был не только тщательный, но даже… он был сверхзаботливым. Космонавты каждодневно возились в своем «огороде», лелеяли каждый росток, а результат все тот же — сохранить их не удалось. Какие-то рахиты вырастали в невесомости…

Тем не менее ни ученые, ни космонавты не опускали рук, не теряли надежды.»

Что еще почитать