Метаболизм. Основные процессы клеточного метаболизма

13.4.1. Реакции цикла Кребса относятся к третьей стадии катаболизма питательных веществ и происходят в митохондриях клетки. Эти реакции относятся к общему пути катаболизма и характерны для распада всех классов питательных веществ (белков, липидов и углеводов).

Главной функцией цикла является окисление ацетильного остатка с образованием четырёх молекул восстановленных коферментов (трёх молекул НАДН и одной молекулы ФАДН2 ), а также образование молекулы ГТФ путём субстратного фосфорилирования. Атомы углерода ацетильного остатка выделяются в виде двух молекул СО2 .

13.4.2. Цикл Кребса включает 8 последовательных стадий, обращая особое внимание на реакции дегидрирования субстратов:

Рисунок 13.6. Реакции цикла Кребса, включая образование α-кетоглутарата

а) конденсация ацетил-КоА с оксалоацетатом , в результате которой образуется цитрат (рис.13.6, реакция 1); поэтому цикл Кребса называют также цитратным циклом . В этой реакции метильный углерод ацетильной группы взаимодействует с кетогруппой оксалоацетата; одновременно происходит расщепление тиоэфирной связи. В реакции освобождается КоА-SH, который может принять участие в окислительном декарбоксилировании следующей молекулы пирувата. Реакцию катализирует цитратсинтаза , это – регуляторный фермент, он ингибируется высокими концентрациями НАДН, сукцинил-КоА, цитрата.

б) превращение цитрата в изоцитрат через промежуточное образование цис-аконитата. Образующийся в первой реакции цикла цитрат содержит третичную гидроксильную группу и не способен окисляться в условиях клетки. Под действием фермента аконитазы идёт отщепление молекулы воды (дегидратация), а затем её присоединение (гидратация), но другим способом (рис.13.6, реакции 2-3). В результате данных превращений гидроксильная группа перемещается в положение, благоприятствующее её последующему окислению.

в) дегидрирование изоцитрата с последующим выделением молекулы СО2 (декарбоксилированием) и образованием α-кетоглутарата (рис. 13.6, реакция 4). Это – первая окислительно-восстановительная реакция в цикле Кребса, в результате которой образуется НАДН. Изоцитратдегидрогеназа , катализирующая реакцию, - регуляторный фермент, активируется АДФ. Избыток НАДН ингибирует фермент.


Рисунок 13.7. Реакции цикла Кребса, начиная с α-кетоглутарата.

г) окислительное декарбоксилирование α-кетоглутарата , катализируется мультиферментным комплексом (рис. 13.7, реакция 5), сопровождается выделением СО2 и образованием второй молекулы НАДН. Эта реакция аналогична пируватдегидрогеназной реакции. Ингибитором служит продукт реакции – сукцинил-КоА.

д) субстратное фосфорилирование на уровне сукцинил-КоА, в ходе которого энергия, освобождающаяся при гидролизе тиоэфирной связи, запасается в форме молекулы ГТФ. В отличие от окислительного фосфорилирования, этот процесс протекает без образования электрохимического потенциала митохондриальной мембраны (рис. 13.7, реакция 6).

е) дегидрирование сукцината с образованием фумарата и молекулы ФАДН2 (рис. 13.7, реакция 7). Фермент сукцинатдегидрогеназа прочно связан с внутренней мембраной митохондрии.

ж) гидратация фумарата , в результате чего в молекуле продукта реакции появляется легко окисляемая гидроксильная группа (рис. 13.7, реакция 8).

з) дегидрирование малата , приводящее к образованию оксалоацетата и третьей молекулы НАДН (рис.13.7, реакция 9). Образующийся в реакции оксалоацетат может вновь использоваться в реакции конденсации с очередной молекулой ацетил-КоА (рис. 13.6, реакция 1). Поэтому данный процесс носит циклический характер.

13.4.3. Таким образом, в результате описанных реакций подвергается полному окислению ацетильный остаток СН3 -СО- . Количество молекул ацетил-КоА, превращаемых в митохондриях в единицу времени, зависит от концентрации оксалоацетата. Основные пути увеличения концентрации оксалоацетата в митохондриях (соответствующие реакции будут рассмотрены позднее):

а) карбоксилирование пирувата – присоединение к пирувату молекулы СО2 с затратой энергии АТФ; б) дезаминирование или трансаминирование аспартата – отщепление аминогруппы с образованием на её месте кетогруппы.

13.4.4. Некоторые метаболиты цикла Кребса могут использоваться для синтеза структурных блоков для построения сложных молекул. Так, оксалоацетат может превращаться в аминокислоту аспартат, а α–кетоглутарат – в аминокислоту глутамат. Сукцинил-КоА принимает участие в синтезе гема – простетической группы гемоглобина. Таким образом, реакции цикла Кребса могут участвовать как в процессах катаболизма, так и анаболизма, то есть цикл Кребса выполняет амфиболическую функцию (см. 13.1).

Все многообразие организмов, обитающих на Земле, можно разделить на две основные группы, отличающиеся использованием различных источников энергии, - аутотрофные и гетеротрофные организмы.

Первые (аутотрофы) - прежде всего зеленые растения, способные непосредственно использовать лучистую энергию Солнца в процессе фотосинтеза, создавая органические соединения (углеводы, аминокислоты, жирные кислоты и др.) из неорганических. Остальные живые организмы ассимилируют уже готовые органические вещества, используя их как источник энергии или пластического материала для построения своего тела.

Следует отметить, что большинство микроорганизмов тоже являются гетеротрофами. Однако они не способны поглощать целые пищевые частицы. Они выделяют в окружающую их среду специальные переваривающие ферменты, которые расщепляют пищевые вещества, превращая их в малые, растворимые молекулы, а уже эти молекулы проникают в клетки.

В результате обмена веществ потребляемые с пищей вещества превращаются в собственные вещества и структуры клетки и, кроме того, организм обеспечивается энергией для совершения внешней работы.

Самовоспроизведение, т. е. постоянное обновление структур организма и размножение, - наиболее характерная особенность обмена веществ в живых организмах, отличающая его от обмена веществ в неживой природе.

Обмен веществ, неразрывно связанный с обменом энергии - это закономерный порядок превращения вещества и энергии в живых системах, направленный на их сохранение и самовоспроизведение. Ф. Энгельс важнейшим свойством жизни отмечал обмен веществ, с прекращением которого прекращается сама жизнь. Он подчеркивал диалектический характер этого процесса и указывал, что

С последовательно материалистических позиций рассматривал роль обмена веществ в жизни организмов основоположник отечественной физиологии И. М. Сеченов. К. А. Тимирязев последовательно проводил идею о том, что основное свойство, которое характеризует живые организмы, заключается в постоянном деятельном обмене между веществом, составляющим организм, и веществом окружающей среды, которое организм постоянно воспринимает, ассимилирует, превращает его в себе подобное, вновь изменяет и выделяет в процессе диссимиляции. И. П. Павлов рассматривал обмен веществ как основу проявления жизнедеятельности, как основу физиологических функций организма. Существенный вклад в познание химизма жизненных процессов сделал А. И. Опарин, который изучал основные закономерности эволюции обмена веществ в ходе возникновения и развития жизни на Земле.

ОСНОВНЫЕ ПОНЯТИЯ И ТЕРМИНЫ

Или метаболизм, - это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности: самосохранения и самовоспроизведения. Под самовоспроизведением понимают превращение вещества, поступающего извне, в вещества и структуры самого организма, в результате чего происходит непрерывное обновление тканей, рост и размножение.

В обмене веществ выделяют:

  • внешний обмен - включает внеклеточное превращение веществ на путях их поступления в организм и выведения продуктов метаболизма из него [показать] .

    Поступление веществ в организм и выделение продуктов метаболизма в совокупности составляет обмен веществами между средой и организмом, и определяется как внешний обмен.

    Внешний обмен веществами (и энергией) осуществляется постоянно.

    В организм человека из внешней среды поступает кислород, вода, минеральные соли, питательные вещества, витамины, необходимые для построения и обновления структурных элементов клеток и тканей, и образования энергии. Все эти вещества можно назвать продуктами питания, одни из которых имеют биологическое происхождение (растительные и животные продукты) и меньшая часть небиологическое (вода и растворенные в ней минеральные соли).

    Поступающие с пищей питательные вещества подвергаются распаду с образованием аминокислот, моносахаридов, жирных кислот, нуклеотидов и других веществ, которые смешиваясь с такими же вещствами, образующимися в процессе непрерывного распада структурно-функциональных компонентов клетки, составляют общий фонд метаболитов организма. Этот фонд расходуется по двум направлениям: часть используется для возобновления распавшихся структурно-функциональных компонентов клетки; другая часть превращается в конечные продукты обмена веществ, которые выводятся из организма.

    При распаде веществ до конечных продуктов обмена освобождается энергия, у взрослого человека 8 000-12 000 кДж (2000-3000 ккал) в сутки. Эта энергия используется клетками организма для совершения разного рода работы, а также для поддержания температуры тела на постоянном уровне.

  • промежуточный обмен - включает превращение веществ внутри биологических клеток с момента их поступления до образования конечных продуктов (например, метаболизм аминокислот,метаболизм углеводов и т.д.)

Этапы обмена веществ . Выделяют три последовательных этапа.

Подробнее о

  • поступлении (Питание - составная часть обмена веществ (поступление веществ из среды в организм))
  • переваривании (Биохимия пищеварения (переваривание питательных веществ))
  • всасывании (Биохимия пищеварения (всасывание питательных веществ))

II. Перемещения и превращения веществ в организме (промежуточный обмен)

Промежуточный обмен (или метаболизм) - превращение веществ в организме с момента поступления их в клетки до образования конечных продуктов обмена, т. е. совокупность химических реакций, протекающих в живых клетках и обеспечивающих организм веществами и энергией для его жизнедеятельности, роста, размножения. Это наиболее сложная часть обмена веществ.

Попав внутрь клетки, питательное вещество метаболизируется - претерпевает ряд химических изменений, катализируемых ферментами. Определенная последовательность таких химических изменений называется метаболическим путем, а образующиеся промежуточные продукты - метаболитами. Метаболические пути могут быть представлены в форме карты метаболизма.

Метаболизм питательных веществ
Углеводов Липидов Белков
Катаболические пути углеводов
  • Гликолиз
  • Гликогенолиз

    Это вспомогательные пути образования энергии из глюкозы (или других моносахаридов) и гликогена при распаде их до лактата (в анаэробных условиях) или до СО 2 и Н 2 О (в аэробных условяих).

  • Пентозофосфатный путь (гексозомонофосфатный или фосфоглюконатный шунт). По имени ученых, сыгравших основную роль в его описании, пентозофосфатный цикл называют циклом Варбурга-Диккенса-Хорекера-Энгельгарда. Этот цикл является ответвлением (или шунтом) гликолиза на стадии глюкозо-6-фосфата.

Анаболические пути углеводов

  • Глюконеогенез (новообразование глюкозы). Возможен во всех тканях организма, главное место - печень.
  • Гликогеногенез (биосинтез гликогена). Происходит во всех тканях организма (может быть исключение составляют эритроциты), особенно активно протекает в скелетных мышцах и печени.
Катаболический путь липидов
  • Внутриклеточный гидролиз липидов (тканевой липолиз) с образованием глицерина и свободной жирной кислоты
  • Окисление глицерина
  • Окисление жирных кислот в цикле Кноопа-Линена

Анаболический путь липидов

  • Синтез жирных кислот (насыщенных и ненасыщенных). В тканях млекопитающих возможно только образование моноеновых жирных кислот (из стеариновой - олеиновая, из пальмитиновой - пальмитоолеиновая). Этот синтез происходит в эндоплазматической сети клеток печени с помощью монооксигенной цепи окисления. Остальные ненасыщенные жирные кислоты в организме человека не образуются и должны поступать с растительной пищей (в растениях образуются полиненасыщенные жирные кислоты). Полиненасыщенные жирные кислоты являются для млекопитающих незаменимыми факторами пищи.
  • Синтез триацилглицеринов. Происходит при депонировании липидов в жировой ткани или в других тканях организма. Процесс локализуется в гиалоплазме клеток. Синтезируемый триацилглицерин накапливается в виде жировых включений в цитоплазме клеток.
Катаболический путь белков
  • Внутриклеточный гидролиз белков
  • Окисление до конечных продуктов (мочевина, вода, углекислый газ). Путь служит для извлечения энергии при распаде аминокислот.

Анаболический путь аминокислот

  • Синтез белков и пептидов - основной путь потребления аминокислот
  • Синтез небелковых азотсодержащих соединений - пуринов, пиримидинов, порфиринов, холина, креатина, меланина, некоторых витаминов, коферментов (никотинамид, фолиевая кислота, кофермент А), тканевых регуляторов (гистамин, серотонин), медиаторов (адреналин, норадреналин, ацетилхолин)
  • Синтез углеводов (глюконеогенез) с использованием углеродных скелетов аминокислот
  • Синтез липидов с использованием ацетильных остатков углеродных скелетов аминокислот
  • Синтез фосфолипидов. Протекает в гиалоплазме тканей, связан с обновлением мембран. Синтезированные фосфолипиды переносятся с помощью липидпереносящих белков цитоплазмы к мембранам (клеточным, внутриклеточным) и встраиваются на мсто старых молекул.

Вследствие конкуренции между путями синтеза фосфолипидов и триацилглицеринов за общие субстраты все вещества, способствующие синтезу фосфолипидов, препятствуют отложению триацилглицеринов в тканях. Эти вещества называют липотропными факторами. К ним можно отнести структурыне компопненты фосфолипидов: холин, инозит,серин; вещество, облегчающее декарбоксилирование серинфосфатидов - пиридоксальфосфат; донор метильных групп - метионин; фолиевую кислоту и цианокобаламин, участвующих в образовании коферментов переноса метильных групп (ТГФК и метилкобаламин). Их можно использовать как лекарственные препараты, препятствующие избыточному отложению триацилглицерина в тканях (жировая инфильтрация).

  • Синтез кетоновых тел. Происходит в митохондриях печени (в других органах кетогенез отсутствует). Существует два пути: гидроксиметилглутаратный цикл (наиболее активный) и деацилазный цикл (малоактивный).
  • Синтез холестерина. Наиболее активен в печени взрослого человека. Печень участвует в распределении холестерина по другим органам и в выделении холестерина с желчью. Холестерин используется на построение биомембран в клетках, а также для образования желчных кислот (в печени), стероидных гормонов (в коре надпочечников, женских и мужских половых железах, плаценте), витамина D 3 , или холекальциферола (в коже).

Таблица 24. Суточный обмен человека (округленные величины; взрослый человек с массой тела около 70 кг)
Вещества Содержание в организме, г Суточное потребление, г Суточное выделение
O 2 - 850 -
CO 2 - - 1000
Вода 42 000 2200 2600
Органические вещества:
белки 15 000 80 -
липиды 10 000 100 -
углеводы 700 400 -
нуклеиновые кислоты 700 - -
мочевина - - 30
Минеральные соли 3 500 20 20
Всего 71 900 3650 3650

В результате метаболической деятельности во всех частях организма образуются вредные вещества которые поступают в кровь, и которые необходимо удалить. Эту функцию выполняют почки, отделяющие вредные вещества и направляющие их в мочевой пузырь, откуда затем они выводятся из организма. В процессе метаболизма принимает участие и другие органы: печень, поджелудочная железа, желчный пузырь, кишечник, потовые железы.

Человек выделяет с мочой, калом, потом, выдыхаемым воздухом главные конечные продукты обмена веществ - СО 2 , Н 2 О, мочевину H 2 N - СО - NH 2 . В форме Н 2 О выводится водород органических веществ, причем организм выделяет воды больше, чем потребляет (см. табл. 24): примерно 400 г воды образуется за сутки в организме из водорода органических веществ и кислорода вдыхаемого воздуха (метаболическая вода). В форме СО 2 выводятся углерод и кислород органических веществ, а в форме мочевины - азот.

Кроме того человек выделяет и много и других веществ, но в незначительных количествах, так что их вклад в общий баланс обмена веществами между организмом и средой невелик. Однако надо отметить, что физиологическое значение выделения таких веществ может быть существенным. Например, нарушение выделения продуктов распада гема или продуктов метаболизма чужеродных соединений, в том числе лекарств, может быть причиной тяжелых нарушений обмена веществ и функций организма.

Субстраты метаболизма - химические соединения, поступающие с пищей. Среди них можно выделить две группы: основные пищевые вещества (углеводы, белки, липиды) и минорные, поступающие в малых количествах (витамины, минеральные соединения).

Принято различать среди пищевых веществ заменимые и незаменимые. Незаменимыми называют те пищевые вещества, которые не могут синтезироваться в организме и, следовательно, должны обязательно поступать с пищей.

Метаболический путь - это характер и последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образующиеся в процессе превращения, называют метаболиты, а последнее соединение метаболического пути - конечный продукт.

Химиические превращения протекают в организме непрерывно. В результате питания организма исходные вещества подвергаются метаболическим превращениям; из организма постоянно выводятся конечные продукты метаболизма. Таким образом, организм представляет собой термодинамически открытую химическую систему. Простейший пример метаболической системы - отдельная неразветвленная метаболическая цепь:

--> a --> b --> c --> d -->

При постоянном потоке веществ в такой системе устанавливается динамическое равновесие, когда скорость образования каждого метаболита равна скорости его расходования. Это значит, что концентрация каждого метаболита сохраняется постоянной. Такое состояние системы называют стационарным, а концентрации веществ в этом состоянии - стационарными концентрациями.

Живой организм в каждый данный момент не отвечает приведенному определению стационарного состояния. Однако, рассматривая среднее значение его параметров за сравнительно большой промежуток времени, можно отметить их относительное постоянство и тем самым оправдать приложение понятия стационарная система к живым организмам [показать] .

На рис. 64 представлена гидродинамическая модель неразветвленной метаболической цепи. В этом приборе высота столба жидкости в цилиндрах моделирует концентрации метаболитов a-d соответственно, а пропускная способность соединительных трубок между цилиндрами моделирует скорость соответствующих ферментативных реакций.

При постоянной скорости поступления жидкости в систему высота столба жидкости во всех цилиндрах остается постоянной: это стационарное состояние.

Если скорость поступления жидкости увеличится, то увеличатся и высота столба жидкости во всех цилиндрах, и скорость протекания жидкости через всю систему: система перешла в новое стационарное состояние. Аналогичные переходы происходят и в метаболических процессах в живой клетке.

Регуляция концентрации метаболитов

Обычно в метаболической цепи есть реакция, протекающая значительно медленнее, чем все другие реакции, - это лимитирующая стадия пути. На рисунке такую стадию моделирует узкая соединительная трубка между первым и вторым цилиндрами. Лимитирующая стадия определяет общую скорость превращения исходного вещества в конечный продукт метаболической цепи. Часто фермент, катализирующий лимитирующую реакцию, является регуляторным ферментом: его активность может изменяться при действии клеточных ингибиторов и активаторов. Таким путем обеспечивается регуляция метаболического пути. На рис. 64 переходная трубка с заслонкой между первым и вторым цилиндрами моделирует регуляторный фермент: поднимая или опуская заслонку, можно переводить систему в новое стационарное состояние, с другой общей скоростью протекания жидкости и другими уровнями жидкости в цилиндрах.

В разветвленных метаболических системах регуляторные ферменты обычно катализируют первые реакции в месте разветвления, например реакции b --> c и b --> i на рис. 65. Этим обеспечивается возможность независимой регуляции каждой ветви метаболической системы.

Многие реакции метаболизма обратимы; направление их протекания в живой клетке определяется расходованием продукта в последующей реакции или удалением продукта из сферы реакции, например путем экскреции (рис. 65).

При изменениях состояния организма (прием пищи, переход от покоя к двигательной активности и др.) концентрация метаболитов в организме изменяется, т. е. устанавливается новое стационарное состояние. Однако в одинаковых условиях, например после ночного сна (до завтрака), они примерно одинаковы у всех здоровых людей; за счет действия регуляторных механизмов концентрация каждого метаболита поддерживается на характерном для него уровне. Средние значения этих концентраций (с указанием пределов колебаний) служат одной из характеристик нормы. При болезнях стационарные концентрации метаболитов изменяются, причем эти изменения часто бывают специфичными для той или иной болезни. На этом основаны многие биохимические методы лабораторной диагностики болезней.

Различают два направления в метаболическом пути - анаболизм и катаболизм (рис. 1).

  • Анаболические реакции направлены на превращение более простых веществ в более сложные, образующие структурно-функциональные компоненты клетки, такие, как коферменты, гормоны, белки, нуклеиновые кислоты и др. Эти реакции преимущественно восстановительные, сопровождаются затратой свободной химической энергии (эндергонические реакции). Источником энергии для них служит процесс катаболизма. Кроме того, энергия катаболизма используется для обеспечения функциональной активности клетки (двигательной и других).
  • Катаболические превращения - процессы расщепления сложных молекул, как поступивших с пищей, так и входящих в состав клетки, - до простых компонентов (диоксида углерода и воды); эти реакции обычно окислительные, сопровождаются выделением свободной энергии (экзергонические реакции).

Амфиболический путь (двойственный) - путь, в ходе которого сочетаются катаболические и анаболические превращения т.е. наряду с разрушением какого-либо соединения происходит синтез другого.

Амфиболические пути связаны с терминальной, или окончательной, системой окисления веществ, где они сгорают до конечных продуктов (СO 2 и Н 2 O) с образованием большого количества энергии. Кроме них конечными продуктами метаболизма являются мочевина и мочевая кислота, образующиеся в специальных реакциях обмена аминокислот и нуклеотидов. Схематически связь метаболизма через систему АТФ-АДФ и амфиболический цикл метаболитов показан на рис. 2.

Система АТФ-AДФ (АТФ-AДФ цикл) - цикл, в котором происходит непрерывное образование молекул АТФ, энергия гидролиза которых используется организмом в различных видах работ.

Это такой метаболический путь, один из конечных продуктов которого идентичен одному из соединений, вовлеченных в этот процесс (рис. 3).

Анаплеротический путь - метаболический, конечный продукт которого идентичен одному из промежуточных продуктов какого-либо циклического пути. Анаплеротический путь в примере рис. 3 пополняет цикл продуктом X (анаплероз - пополнение).

Воспользуемся таким примером. В городе курсируют автобусы марок X, Y, Z. Их маршруты показаны на схеме (рис. 4).

На основе этого примера определим следующее.

  • Частный путь метаболизма - это совокупность превращений, свойственная только определенному соединению (например, углеводам, липидам или аминокислотам).
  • Общий путь метаболизма - совокупность превращений, в которые вовлекаются два и более видов соединений (например, углеводы и липиды или углеводы, липиды и аминокислоты).

Локализация метаболических путей

Катаболические и анаболические пути у эукариотических особей отличаются по своей локализации в клетке (таб.22.).

Такое деление обусловлено приуроченностью ферментных систем к определенным участкам клетки (компартментализация), которая обеспечивает как сегрегацию, так и интеграцию внутриклеточных функций, а также соответствующий контроль.

В настоящее время благодаря электронно-микроскопическим и гистохимическим исследованиям, а также методу дифференциального центрифугирования достигнуты значительные успехи в определении внутриклеточной локализации ферментов. Как видно из рис. 74, в клетке можно обнаружить клеточную, или плазменную, мембрану, ядро, митохондрии, лизосомы, рибосомы, систему канальцев и пузырьков - эндоплазматический ретикулум, пластинчатый комплекс, различные вакуоли, внутриклеточные включения и др. Главную по массе недифференцированную часть цитоплазмы клетки составляет гиалоплазма (или цитозоль).

Установлено, что в ядре (точнее, в ядрышке) локализованы РНК-полимеразы, т. е. ферменты, катализирующие, образование мРНК. В ядре содержатся ферменты, участвующие в процессе репликации ДНК, и некоторые другие (табл. 23).

Таблица 23. Локализация некоторых ферментов внутри клетки
Цитозоль Ферменты гликолиза

Ферменты пентозного пути

Ферменты активации аминокислот

Ферменты синтеза жирных кислот

Фосфорилаза

Гликогенсинтаза

Митохондрии Пируватдегидрогеназный комплекс

Ферменты цикла Кребса

Ферменты цикла окисления жирных кислот

Ферменты биологического окисления и окислительного фосфорилирования

Лизосомы Кислые гидролазы
Микросомальная фракция Рибосомальные ферменты белкового синтеза

Ферменты синтеза фосфолипидов, триглицеридов, а также ряд ферментов, принимающих участие в синтезе холестерина

Гидроксилазы

Плазматическая мембрана Аденилатциклаза, Na+-K+-зависимая АТФ-аза
Ядро Ферменты, участвующие в процессе репликации ДНК РНК-полимераза НАД-синтетаза

Связь ферментов со структурами клетки:

  • Митохондрии. С митохондриями связаны ферменты цепи биологического окисления (тканевого дыхания) и окислительного фосфорилирования, а также ферменты пируватдегидрогеназного комплекса, цикла трикарбоновых кислот, синтеза мочевины, окисления жирных кислот и др.
  • Лизосомы. В лизосомах содержатся в основном гидролитические ферменты с оптимумом pH в области 5. Именно из-за гидролитической принадлежности ферментов эти частицы названы лизосомами.
  • Рибосомы. В рибосомах локализованы ферменты белкового синтеза, в этих частицах происходят транслирование мРНК и связывание аминокислот в полипептидные цепи с образованием молекул белка.
  • Эндоплазматический ретикулум. В эндоплазматической сети сосредоточены ферменты синтеза липидов, а также ферменты, участвующие в реакциях гидроксилирования.
  • Плазматическая мембрана. С плазматической мембраной прежде всего связаны АТФ-аза, транспортирующая Na + и К + , аденилатциклаза и ряд других ферментов.
  • Цитозоль. В цитозоле (гиалоплазме) локализованы ферменты гликолиза, пентозного цикла, синтеза жирных кислот и мононуклеотидов, активирования аминокислот, а также многие ферменты глюконеогенеза.

В табл. 23 суммированы данные о локализации важнейших ферментов и отдельных метаболических стадий в различных субклеточных структурах.

Мультиферментные системы локализуются в структуре органелл таким образом, что каждый фермент располагается в непосредственной близости от следующего фермента данной последовательности реакций. Благодаря этому сокращается время, необходимое для диффузии промежуточных продуктов реакций, и вся последовательность реакций оказывается строго координированной во времени и пространстве. Это справедливо, например, для ферментов, участвующих в окислении пировиноградной кислоты и жирных кислот, в синтезе белка, а также для ферментов переноса электронов и окислительного фосфорилирования.

Компартментализация обеспечивает кроме того протекание в одно и то же время химически несовместимых реакций, т.е. самостоятельность путей катаболизма и анаболизма. Так, в клетке одновременно может происходить окисление жирных кислот с длинной цепью до стадии ацетил-КоА и противоположно направленный процесс - синтез жирных кислот из ацетил-КоА. Эти химически несовместимые процессы протекают в разных частях клетки: окисление жирных кислот - в митохондриях, а их синтез вне митохондрий - в гиалоплазме. Если бы эти пути совпадали и различались лишь направлением процесса, то в обмене возникли бы так называемые бесполезные, или футильные, циклы. Такие циклы имеют место при патологии, когда возможен бесполезный круговорот метаболитов.

Выяснение отдельных звеньев метаболизма у разных классов растений, животных и микроорганизмов обнаруживает принципиальную общность путей биохимических превращений в живой природе.

ОСНОВНЫЕ ПОЛОЖЕНИЯ РЕГУЛЯЦИИ ОБМЕНА ВЕЩЕСТВ

Регуляция метаболизма на клеточном и субклеточном уровнях осуществляется

  1. путем регуляции синтеза и каталитической активности ферментов.

    К таким регуляторным механизмам относятся

    • подавление синтеза ферментов конечным продуктов метаболического пути,
    • индукция синтеза одного или более ферментов субстратами,
    • модуляция активности уже присутствующих молекул ферментов,
    • регуляция скорости поступления метаболитов в клетку. Здесь ведущая роль за биологическими мембранами, окружaющими протоплазму и находящиеся в ней ядро, митохондрии, лизосомы и другие субклеточные органеллы.
  2. путем регуляции синтеза и активности гормонов. Так, на белковый обмен оказывает влияние гормон щитовидной железы - тироксин, на жировой - гормоны поджелудочной и щитовидной желез, надпочечников и гипофиза, на углеводный - гормоны поджелудочной железы (инсулин) и надпочечников (адреналин). Особая роль в механизме действия гормонов принадлежит циклическим нуклеотидам (цАМФ и цГМФ).

    У животных и человека гормональная регуляция обмена веществ тесно связана с координирующей деятельностью нервной системы. Примером влияния нервной системы на углеводный обмен является так называемый сахарный укол Клода Бернара, который приводит к гипергликемии и глюкозурии.

  3. Важнейшая роль в процессах интеграции обмена веществ принадлежит коре головного мозга. Как указывал И П. Павлов: "Чем совершеннее нервная система животного организма, тем она централизованнее, тем высший ее отдел является все в большей и большей степени распорядителем и распределителем всей деятельности организма... Этот высший отдел содержит в своем ведении все явления, происходящие в теле".

Таким образом, особое сочетание, строгая согласованность и темп протекания реакций обмена веществ в совокупности образуют систему, обнаруживающую свойства механизма обратной связи (положительной или отрицательной).

МЕТОДЫ ИЗУЧЕНИЯ ПРОМЕЖУТОЧНОГО ОБМЕНА ВЕЩЕСТВ

Для изучения обмена веществ применяют два подхода:

  • исследования на целом организме (эксперименты in vivo) [показать]

    Классический пример исследований на целом организме, проведенных еще в начале нашего века, составляют эксперименты Кноопа. Он изучал способ распада жирных кислот в организме. Для этого Кнооп скармливал собакам различные жирные кислоты с четным (I) и нечетным (II) числом атомов углерода, в которых один атом водорода в метильной группе был замещен на фенильный радикал С 6 Н 5:

    В первом случае с мочой собак всегда выводилась фенилуксусная кислота С 6 Н 5 -СН 2 -СООН, а во втором - бензойная кислота С 6 Н 5 -СООН. На основании этих результатов Кнооп сделал вывод, что распад жирных кислот в организме происходит путем последовательного отщепления двууглеродных фрагментов, начиная с карбоксильного конца:

    СН 3 -СН 2 -|-СН 2 -CH 2 -|-CH 2 -СН 2 -|-СН 2 -СН 2 -|-СН 2 - СООН

    Позднее этот вывод был подтвержден другими методами.

    По существу в этих исследованиях Кнооп применил метод мечения молекул: он использовал в качестве метки фенильный радикал, не подвергающийся изменениям в организме. Начиная примерно с 40-х годов XX в. получило распространение применение веществ, молекулы которых содержат радиоактивные или тяжелые изотопы элементов. Например, скармливая экспериментальным животным разные соединения, содержащие радиоактивный углерод (14 С), установили, что все атомы углерода в молекуле холестерина происходят из углеродных атомов ацетата:

    Обычно используются либо стабильные изотопы элементов, отличающиеся по массе от широко распространенных в организме элементов (обычно тяжелые изотопы), либо радиоактивные изотопы. Из стабильных изотопов чаще используют изотопы водорода с массой 2 (дейтерий, 2 Н), азот с массой 15 (15 N), углерод с массой 13 (13 С) и кислород с массой 18 (18 C). Из радиоактивных изотопов применяются изотопы водорода (тритий, 3 Н), фосфора (32 Р и 33 Р), углерода (14 С), серы (35 S), йода (131 I), железа (59 Fe), натрия (54 Na) и др.

    Пометив при помощи стабильного или радиоактивного изотопа молекулу исследуемого соединения и введя его в организм, определяют затем меченые атомы или содержащие их химические группы и, открыв их в определенных соединениях, делают заключение о путях превращения меченого вещества а организме. С помощью изотопной метки можно также установить время пребывания вещества в организме, которое с известным приближением характеризует биологический период полураспада, т. е. время, за которое количество изотопа или меченого соединения уменьшается вдвое, или получить точные сведения относительно проницаемости мембран отдельных клеток. Изотопы применяются также, чтобы установить, является ли данное вещество предшественником или продуктом распада другого соединения, а также определить скорость обновления тканей. Наконец, при существовании нескольких путей обмена веществ можно определить, какой из них превалирует.

    В исследованиях на целых организмах изучают и потребности организма в пищевых веществах: если устранение из рациона какого-либо вещества приводит к нарушению роста и развития или физиологических функций организма, значит, это вещество является незаменимым пищевым фактором. Сходным образом определяются и необходимые количества пищевых веществ.

  • и исследования на изолированных частях организма - аналитически-дезинтегрирующие методы (эксперименты in vitro, т. е. вне организма, в пробирке или других лабораторных сосудах). Принцип этих методов состоит в поэтапном упрощении, а точнее дезинтеграции, сложной биологической системы с целью изолирования отдельных процессов. Если рассматривать эти методы в нисходящей последовательности, т. е. от более сложных к более простым системам, то их можно расположить в следующем порядке:
    • удаление отдельных органов [показать]

      При удалении органов имеются два объекта исследования: организм без удаленного органа и изолированный орган.

      Изолированные органы. Если в артерию изолированного органа вводить раствор какого-либо вещества и анализировать вещества в жидкости, вытекающей из вены, то можно установить, каким превращениям подвергается это вещество в органе. Например, таким путем было найдено, что печень служит главным местом образования кетоновых тел и мочевины.

      Сходные опыты можно проводить на органах без их выделения из организма (метод артерио-венозной разницы): в этих случаях кровь для анализа отбирают с помощью канюль, вставленных в артерию и вену органа, или с помощью шприца. Таким путем, например, можно установить, что в крови, оттекающей от работающих мышц, увеличена концентрация молочной кислоты, а протекая через печень, кровь освобождается от молочной кислоты.

    • метод тканевых срезов [показать]

      Срезы - это тонкие кусочки тканей, которые изготовляются с помощью микротома или просто бритвенного лезвия. Срезы инкубируют в растворе, содержащем питательные вещества (глюкозу или другие) и вещество, превращения которого в клетках данного типа хотят выяснить. После инкубации анализируют продукты метаболизма исследуемого вещества в инкубационной жидкости.

      Метод тканевых срезов впервые был предложен Варбургом в начале 20-х годов. C помощью такой методики можно изучать тканевое дыхание (потребление кислорода и выделение углекислоты тканями). Существенным ограничением в изучении метаболизма в случае применения тканевых срезов являются клеточные мембраны, которые - чаще действуют как барьеры между содержимым клетки и "питательным" раствором.

    • гомогенаты и субклеточные фракции [показать]

      Гомогенаты - это бесклеточные препараты. Их получают путем разрушения клеточных мембран растиранием ткани с песком или в специальных приборах - гомогенизаторах (рис. 66). В гомогенатах нет барьера непроницаемости между добавляемыми субстратами и ферментами.

      Разрушение клеточных мембран делает возможным непосредственный контакт между содержимым клетки и добавленными соединениями. Это дает возможность установить, какие ферменты, коферменты и субстраты имеют значение для исследуемого процесса.

      Фракционирование гомогенатов. Из гомогената можно выделить субклеточные частицы как надмолекулярные (клеточные органеллы), так и отдельные соединения (ферменты и другие белки, нуклеиновые кислоты, метаболиты). Например, с помощью дифференциального центрифугирования можно получить фракции ядер, митохондрий, микросом (микросомы - это фрагменты эндоплазматического ретикулума). Эти органеллы различаются размерами и плотностью и поэтому осаждаются при разных скоростях центрифугирования. Использование изолированных органелл позволяет изучать процессы обмена веществ, связанных с ними. Например, для изучения путей и механизмов синтеза белка используются изолированные рибосомы, а для исследования окислительных реакций цикла Кребса или цепи дыхательных ферментов служат митохондрии.

      После осаждения микросом в надосадочной жидкости остаются растворимые компоненты клетки - растворимые белки, метаболиты. Каждую из этих фракций можно разными методами фракционировать дальше, выделяя составляющие их компоненты. Из выделенных компонентов можно реконструировать биохимические системы, например простую систему "фермент + субстрат" и такие сложные, как системы синтеза белков и нуклеиновых кислот.

    • частичная или полная реконструкция ферментной системы in vitro с использованием ферментов, коферментов и других компонентов реакции [показать]

      Использование с целью интеграции высоко очищенных ферментов и коферментов . Например, с помощью данного метода стало возможным полностью воспроизвести систему брожения, которая имеет все существенные признаки брожения дрожжей.

Разумеется, эти методы имеют ценность только как этап, необходимый для решения конечной цели - понимания функционирования целого организма.

ОСОБЕННОСТИ ИЗУЧЕНИЯ БИОХИМИИ ЧЕЛОВЕКА

В молекулярных процессах разных организмов, населяющих Землю, имеется далеко идущее сходство. Такие фундаментальные процессы, как матричные биосинтезы, механизмы трансформации энергии, основные пути метаболических превращений веществ примерно одинаковы у организмов от бактерий до высших животных. Поэтому многие результаты исследований, проведенных с кишечной палочкой, оказываются применимыми и к человеку. Чем больше филогенетическое родство видов, тем больше общего в их молекулярных процессах.

Подавляющую часть знаний о биохимии человека получают таким путем: исходя из известных биохимических процессов у других животных, строят гипотезу о наиболее вероятном варианте данного процесса в организме человека, а затем проверяют гипотезу прямыми исследованиями клеток и тканей человека. Такой подход позволяет проводить исследования на небольшом количестве биологического материала, получаемого от человека. Чаще всего используют ткани, удаляемые при хирургических операциях, клетки крови (эритроциты и лейкоциты), а также клетки тканей человека, выращиваемые в культуре in vitro.

Изучение наследственных болезней человека, необходимое для разработки эффективных методов их лечения, одновременно дает много информации о биохимических процессах в организме человека. В частности, врожденный дефект фермента приводит к тому, что в организме накапливается его субстрат; при изучении таких нарушений обмена иногда открывают новые ферменты и реакции, количественно незначительные (поэтому они и не были замечены при изучении нормы), которые имеют, однако, витальное значение.

В клетке постоянно происходит большое количество разнообразных химических реакций, которые формируют метаболические пути - последовательное превращение одних соединений в другие. Метаболизм - совокупность всех метаболических путей, протекающих в клетках организма.

Среди всех метаболических путей, протекающих в организме, выделяют противоположно направленные процессы: катаболизм и анаболизм. Катаболизм - распад сложных веществ до простых с высвобождением энергии.

Анаболизм - синтез из простых более сложных веществ. Метаболические пути согласованы между собой по месту, времени и интенсивности протекания. Эта согласованность протекания всех процессов обеспечивается сложными и многообразными механизмами регуляции.

Организация химических реакций в метаболические пути

Оптимальная активность ферментов, катализирующих реакции одного метаболического пути, достигается благодаря определённой пространственной организации в клетке.

  1. Пространственная локализация ферментов

Большинство ферментов имеет внутриклеточную локализацию и распределены в организме неравномерно. Все ферменты одного метаболического пути, как правило, находятся в одном отделе клетки. Особенно разделение метаболических путей важно для противоположно направленных катаболических и анаболических процессов. Например, синтез жирных кислот происходит в цитоплазме, а их распад в митохондриях. Если бы такого разделения не существовало, образовывались бы бесполезные с функциональной и энергетической точки зрения пути.

В метаболических путях продукт первой ферментативной реакции служит субстратом второй и так далее до формирования конечного продукта. Промежуточные продукты метаболического пути могут высвобождаться из последовательности реакций и использоваться в других метаболических путях, т.е. метаболические пути связаны между собой промежуточными продуктами.

В ряде случаев пространственная организация ферментов настолько сильно выражена, что продукт реакции ни при каких условиях не может быть вычленен из метаболического пути и обязательно служит субстратом следующей реакции. Такая организация метаболического пути носит название мультиферментного комплекса и возникает в результате структурно-функциональной организации ферментов. Обычно такие комплексы связаны с мембранами. В качестве примеров мультиферментных комплексов можно привести пируватдегидрогеназный комплекс, под действием которого происходит окислительное декарбоксилирование пировиноградной кислоты (пирувата) (см. раздел 6), синтазу жирных кислот, катализирующую синтез пальмитиновой кислоты (см. раздел 8).

  1. Структура метаболических путей

Структура метаболических путей в клетке крайне разнообразна.

В случае, когда субстрат в результате ряда ферментативных процессов превращается в один продукт, такой путь носит название линейного метаболического пути . Часто встречаются разветвлённые метаболические пути, приводящие к синтезу различных конечных продуктов в зависимости от потребности клетки.

Ферментный состав различных клеток неодинаков. Ферменты, выполняющие функцию жизнеобеспечения клетки, находятся во всех клетках организма. В процессе дифференцировки клеток происходит изменение ферментного состава клеток. Так, фермент аргиназа, участвующий в синтезе мочевины, находится только в клетках печени, а кислая фосфатаза, участвующая в гидролизе моноэфиров ортофосфорной кислоты, - в клетках простаты. Это так называемые органоспецифичные ферменты .

Клетка - сложнофункциональная система, регулирующая своё жизнеобеспечение. Многообразие функций клетки обеспечивается пространственной и временной (в первую очередь, в зависимости от ритма питания) регуляцией определённых метаболических путей. Пространственная регуляция связана со строгой локализацией определённых ферментов в различных органеллах. Так, в ядре находятся ферменты, связанные с синтезом молекул ДНК и РНК, в цитоплазме - ферменты гликолиза, в лизосомах - гидролитические ферменты, в матриксе митохондрий - ферменты ЦТК, во внутренней мембране митохондрий - ферменты цепи переноса электронов и т.д.

Принципы регуляции метаболических путей

Все химические реакции в клетке протекают при участии ферментов. Поэтому, чтобы воздействовать на скорость протекания метаболического пути, достаточно регулировать количество или активность ферментов. Обычно в метаболических путях есть ключевые ферменты, благодаря которым происходит регуляция скорости всего пути. Эти ферменты (один или несколько в метаболическом пути) называются регуляторными ферментами; они катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-лимитирующие реакции (самые медленные) или реакции в месте переключения метаболического пути (точки ветвления).

Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:

  • изменением количества молекул фермента;
  • доступностью молекул субстрата и кофермента;
  • изменением каталитической активности молекулы фермента.
  1. Регуляция количества молекул фермента
    в клетке.

Известно, что белки в клетке постоянно обновляются. Количество молекул фермента в клетке определяется соотношением 2 процессов - синтеза и распада белковой молекулы фермента:

Синтез и фолдинг белка - многостадийный процесс. Регуляция синтеза белка может происходить на любой стадии формирования белковой молекулы. Наиболее изучен механизм регуляции синтеза белковой молекулы на уровне транскрипции, который осуществляется определёнными метаболитами, гормонами и рядом биологически активных молекул.

Что касается распада ферментов, то регуляция этого процесса менее изучена. Можно только предполагать, что это не просто процесс протеолиза (разрушения белковой молекулы), а сложный механизм, возможно, определяемый на генетическом уровне.

  1. Регуляция скорости ферментативной
    реакции доступностью молекул субстрата
    и коферментов.

Важный параметр, контролирующий протекание метаболического пути, - наличие субстратов, и главным образом - наличие первого субстрата. Чем больше концентрация исходного субстрата, тем выше скорость метаболического пути.

Другой параметр, лимитирующий протекание метаболического пути, - наличие регенерированных коферментов. Например, в реакциях дегидрирования коферментом дегидрогеназ служат окисленные формы NAD+, FAD, FMN, которые восстанавливаются в ходе реакции. Чтобы коферменты вновь участвовали в реакции, необходима их регенерация, т.е. превращение в окисленную форму.

  1. Регуляция каталитической активности
    ферментов

Важнейшее значение в изменении скорости метаболических путей играет регуляция каталитической активности одного или нескольких ключевых ферментов данного метаболического пути. Это высокоэффективный и быстрый способ регуляции метаболизма.

Основные способы регуляции активности ферментов:

  • аллостерическая регуляция;
  • регуляция с помощью белок-белковых взаимодействий;
  • регуляция путём фосфорилирования/дефосфорилирования молекулы фермента;
  • регуляция частичным (ограниченным) протеолизом.

Аллостерическая регуляция . Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами. Участвующие в аллостерической регуляции эффекторы - клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.

Таким образом, образование в печени гликогена из молочной кислоты, по- видимому, обеспечивает важную связь между метаболизмом в мышцах и в печени. При участии печени гликоген из мышц превращается в доступный сахар крови, а этот сахар в свою очередь превращается в мышечный гликоген. Следовательно, в организме существует замкнутый цикл превращений молекул глюкозы... Было показано, что адреналин ускоряет эти реакции в направлении от гликогена мышц к гликогену печени... В то же время инсулин ускоряет реакции в направлении от глюкозы крови к мышечному гликогену.

К. Ф. Кори и Г. Т. Кори, из статьи в журнале Biological Chemistry , 1929

15. ПРИНЦИПЫ РЕГУЛЯЦИИ МЕТАБОЛИЗМА

Регуляция реакций метаболизма составляет основное содержание исследований в биохимии, и это одна из наиболее замечательных способностей живой клетки. Среди тысяч ферментативных реакций, происходящих в клетке, возможно, нет ни одной, которая в том или ином виде не подвергалась бы регуляции. Хотя в учебниках принято (да это и полезно) подразделять метаболический процесс на отдельные «пути», выполняющие определенные функции в жизнеобеспечении клетки, в самой клетке подобного разделения не существует. Более того, каждый путь, обсуждаемый в этой книге, неразрывно связан со всеми другими клеточными процессами, что показано с помощью многомерной сети реакций (рис. 15-1). Например, в гл. 14 мы обсуждали три возможных пути превращения глюкозо-6-фосфата в клетках печени: участие в гликолизе для накопления АТР, участие в пентозофосфатном пути для получения NADPH и пентозофосфатов, а также гидролиз до глюкозы и фосфата для пополнения запасов глюкозы в крови. Но на самом деле существует ряд других возможных путей превращения глюкозо-6-фосфата; он может, например, использоваться для синтеза других сахаров, таких как глюкозамин, галактоза, галактозамин, фукоза и нейраминовая кислота, участвовать в гликозилировании белков или частично разлагаться, поставляя ацетил-СоА для синтеза жирных кислот и стеринов. Например, бактерия Escherichia coli использует глюкозу для синтеза углеродных скелетов абсолютно всех своих молекул. Когда клетка направляет глюкозо-6-фосфат по одному из путей, это оказывает влияние на все остальные пути, в которых это вещество является предшественником или интермедиатом. Любое изменение в распределении глюкозо-6-фосфата в одном метаболическом пути прямо или косвенно влияет на его участие во всех других путях.

Подобные изменения в распределении метаболитов часто случаются в жизни клетки. Луи Пастер первым описал значительное увеличение потребления глюкозы (более чем в 10 раз) культурой дрожжей при переходе от аэробных условий к анаэробным. Это явление, называемое эффектом Пастера, не сопровождается какими-либо заметными колебаниями концентрации АТР или какого-то другого вещества из сотен интермедиатов и продуктов метаболизма глюкозы. Похожие изменения наблюдаются в клетках скелетных мышц бегуна на спринтерской дистанции. Клетки обладают потрясающей способностью одновременно и экономно осуществлять все эти взаимосвязанные метаболические превращения и получать каждый продукт в строго определенном количестве и в строго определенный момент времени при изменяющихся условиях внешней среды.

Рис. 15-1. Трехмерная сеть реакций метаболизма. Типичная эукариотическая клетка способна к синтезу около 30 000 различных белков, катализирующих тысячи реакций, в которых образуются сотни метаболитов — многие задействованы в нескольких метаболических путях. Иллюстрация взята из базы данных KEGG PATHWAY (Kyoto Encyclopedia of Genes and Genomes www.genome.ad.jp/kegg/pathway/map/map0ll00.html). Каждую область можно рассмотреть более подробно, вплоть до уровня отдельных ферментов и интермедиатов.

В этой главе мы проиллюстрируем основные принципы регуляции метаболизма на примере метаболизма глюкозы. Мы начнем с рассмотрения общей роли регуляции в достижении метаболического гомеостаза и познакомимся с теорией контроля метаболизма, на основе которой можно проводить количественный анализ сложных метаболических процессов. Далее мы остановимся на особенностях регуляции отдельных ферментов метаболизма глюкозы и рассмотрим каталитическую активность ферментов, участвующих в гликолизе и глюконеогенезе, описанных в гл. 14. Обсудим также каталитические и регуляторные свойства ферментов, участвующих в синтезе и разрушении гликогена, одного из наиболее изученных примеров регуляции метаболизма. Выбрав для иллюстрации принципов метаболической регуляции метаболизм углеводов, мы искусственно отделили его от метаболизма жирных кислот. На самом деле эти два процесса в клетке очень тесно связаны, как мы увидим в гл. 23.

15.1. Регуляция метаболических путей

Реакции катаболизма в метаболизме гликогена обеспечивают энергию, необходимую для преодоления «сил» энтропии, а реакции анаболизма приводят к образованию исходных молекул для биосинтеза и запасанию метаболической энергии. Эти процессы настолько важны для жизнедеятельности клеток, что в ходе эволюции возникли очень сложные регуляторные механизмы, обеспечивающие передвижение метаболитов по правильным путям, в нужном направлении и с необходимой скоростью с тем, чтобы полностью удовлетворять текущие нужды клетки или организма; при изменении внешних условий корректируется скорость превращений метаболитов в соответствующих метаболических путях.

Внешние же условия действительно меняются, иногда довольно сильно. При большой физической нагрузке потребность мышц в АТР может вырасти за считанные секунды в сотни раз. Доступность кислорода может снизиться из-за гипоксии (ухудшения доставки кислорода к тканям) или ишемии (уменьшения кровотока к тканям). Соотношение углеводов, жиров и белков в пище различается, и богатые энергией питательные вещества поступают в организм нерегулярно, в результате чего между приемами пищи и при голодании возникает необходимость коррекции происходящих метаболических процессов. Огромные количества энергии и молекул требуются для биосинтеза, например, при заживлении ран.

Клетки и организмы существуют в динамическом стационарном состоянии

Богатые энергией молекулы, такие как глюкоза, поглощаются клеткой, а отходы метаболизма, например, СO 2 , покидают ее, но при этом масса и состав клетки, отдельного органа или взрослого животного практически не меняются во времени; клетки и организмы существуют в динамическом стационарном состоянии, но никак не в равновесии с окружающей средой. Субстрат для каждой реакции метаболического пути поступает от предыдущей реакции с такой же скоростью, с какой он далее превращается в продукт. Другими словами, хотя скорость (v ) потока вещества (или просто — поток ) на данной стадии метаболизма может быть высокой и сильно изменяться, концентрация субстрата остается постоянной. Для двухстадийной реакции

при v 1 = v 2 концентрация постоянна. Например, изменение скорости поступления глюкозы из различных источников в кровь компенсируется изменением v 2 всасывания глюкозы из крови в ткани, таким образом, концентрация глюкозы в крови поддерживается около 5 мМ. Это гомеостаз на молекулярном уровне. У человека нарушение механизмов гомеостаза часто бывает причиной заболеваний. Например, при сахарном диабете регуляция концентрации глюкозы в крови нарушена из-за недостатка инсулина или нечувствительности к нему, что и влечет за собой пагубные последствия для здоровья.

Когда внешние воздействия не ограничиваются просто временным влиянием или когда клетка одного типа превращается в клетку другого типа, регулирование состава клетки и метаболизма может оказаться более значительным и потребовать заметных и продолжительных изменений в распределении энергии и исходных веществ для синтеза, чтобы аккуратно осуществить этот переход. Представьте себе, например, процесс дифференцировки стволовой клетки костного мозга в эритроцит. Исходная клетка содержит ядро, митохондрии и мало или вовсе не содержит гемоглобина, в то время как в полностью дифференцированном эритроците гемоглобина огромное количество, но ни ядра, ни митохондрий нет. Состав этой клетки постоянно изменялся в ответ на приходящие извне сигналы, и соответственно менялся и метаболизм. Дифференцировка клеток требует точной регуляции концентраций клеточных белков.

В ходе эволюции возник замечательный набор регуляторных механизмов, позволяющих поддерживать гомеостаз на уровне молекул, клеток и целых организмов. Значение регуляции метаболизма для организма отражается в относительном количестве генов, кодирующих элементы регуляторного аппарата: у человека около 4000 генов (около 12% всех генов) кодируют регуляторные белки, в том числе разнообразные рецепторы, регуляторы экспрессии генов и около 500 различных протеинкиназ! Регуляторные механизмы действуют в разном временном диапазоне (от секунд до суток) и отличаются по чувствительности к изменениям внешней среды. Во многих случаях эти механизмы перекрываются: один и тот же фермент может быть объектом регуляции в нескольких регуляторных механизмах.

Регулируется не только количество ферментов, но и их каталитическая активность

Интенсивность ферментативного процесса может регулироваться как путем изменения количества ферментов, так и путем модуляции каталитической активности присутствующих молекул фермента. Подобные превращения происходят во временном диапазоне от нескольких миллисекунд до нескольких часов и служат ответом на внутриклеточный или внешний сигнал. Очень быстрые аллостерические изменения ферментативной активности обычно инициируются на месте путем изменения локальной концентрации небольших молекул субстрата данного метаболического пути (в реакциях гликолиза — глюкозы), продукта пути (АТР при гликолизе) или ключевого метаболита или кофактора (такого, как NADH ), что связано с метаболической способностью клетки. Вторичные мессенджеры (такие, как циклический АМР и Са 2+), образующиеся внутри клеток в ответ на внеклеточные сигналы (гормоны, цитокины и т. п.), также опосредуют аллостерическую регуляцию, но несколько медленнее влияя на механизмы передачи сигнала (см. гл. 12).

Внеклеточные сигналы (рис. 15-2, Ф) могут быть гормональными (инсулин или адреналин), нейрональными (ацетилхолин) или передаваться с помощью факторов роста или цитокинов. Количество данного фермента в клетке определяется соотношением между скоростями его синтеза и деградации. Скорость синтеза регулируется путем активации (в ответ на какой-то внешний сигнал) фактора транскрипции (рис. 15-2, (D ; подробности см. в гл. 28). Факторы транскрипции — это ядерные белки, которые после активации связываются со специфическими участками ДНК (респонсивными элементами) вблизи области промотора гена (точки начала транскрипции) и активируют или подавляют транскрипцию данного гена, что приводит к увеличению или уменьшению продукции соответствующего белка. Активация фактора транскрипции часто происходит в результате его связывания со специфическим лигандом, а иногда бывает вызвана его фосфорилированием или дефосфорилированием. Каждый ген контролируется одним или несколькими респонсивными элементами, которые распознаются специфическими факторами транскрипции. Некоторые гены содержат несколько респонсивных элементов и, следовательно, контролируются несколькими различными факторами транскрипции, реагирующими на несколько различных сигналов. Группы генов, кодирующих белки, действие которых взаимосвязано, как в случае ферментов гликолиза или глюконеогенеза, часто содержат респонсивные элементы с одинаковой последовательностью, так что один и тот же сигнал, действующий через определенный фактор транскрипции, включает или выключает всю группу генов одновременно. В разд. 15.3 обсуждается регуляция метаболизма углеводов под действием специфических факторов транскрипции.

Устойчивость молекул мРНК к рибонуклеа- зам (рис. 15-2, (D ) может быть различной, так что количество мРНК данного вида в клетке — функция скоростей ее синтеза и деградации (гл. 26). Наконец, скорость трансляции мРНК на рибосомах (рис. 15-2, (4)) также регулируется и зависит от нескольких факторов, описанных подробно в гл. 27.

Рис. 15-2. Факторы, влияющие на активность ферментов. Общая активность фермента может меняться из-за изменения числа молекул данного (количества) фермента в клетке, его эффективной активности в определенном клеточном отделе ((1)-(6)) или модуляции активности существующих молекул фермента как подробно описано в тексте. Активность конкретного фермента определяется сочетанием этих факторов.

Обратите внимание, что увеличение продукции мРНК в n раз не всегда означает n -кратное увеличение синтеза соответствующего белка.

Образовавшаяся молекула белка существует ограниченное время, а именно, от нескольких минут до многих дней (табл. 15-1). Скорость деградации ферментов (рис. 15-2, (5)) также различна и определяется внутриклеточными условиями. Некоторые белки подвергаются деградации в протеасомах (см. гл. 28) в результате ковалентного связывания с убиквитином (вспомните белок циклин; см. рис. 12-46). Быстрый оборот (синтез с последующей деградацией) сопряжен с большими энергетическими затратами, однако белки с меньшим периодом полужизни (время, за которое остается половина первоначального количества вещества) могут достичь нового стационарного состояния по своему содержанию быстрее белков, время полужизни которых велико, и выигрыш от такой быстрой реакции должен уравновешивать или быть больше энергетических затрат клетки.

Таблица 15-1. Примерное время полужизни белков в органах млекопитающих

Еще один фактор, влияющий на эффективную активность фермента, — это доступность его субстрата (рис. 15-2, (6)). Гексокиназа из мышц не может действовать на глюкозу, пока этот сахар не поступит из крови в клетки мышц, а скорость проникновения глюкозы в клетки зависит от молекул-переносчиков (см. табл. 11-3) в плазматической мембране. Внутри клетки некоторые ферменты и ферментные системы содержатся в различных ограниченных мембраной компартментах; доставка субстратов в эти отделы может быть лимитирующим фактором для фермента.

Благодаря наличию этих нескольких механизмов регуляции ферментативной активности клетки способны существенно изменять набор ферментов в ответ на изменение условий метаболизма. У позвоночных наиболее приспосабливаемым органом является печень; например, замена богатой углеводами пищи на пищу с высоким содержанием липидов влияет на транскрипцию сотен генов и, следовательно, синтез сотен белков. Подобные глобальные изменения в экспрессии генов можно оценить на количественном уровне с помощью ДНК-микрочипов (см. рис. 9-22), позволяющих анализировать весь набор мРНК данного типа клеток или органов (транскриптом), или с помощью двумерного гель-электрофореза (см. рис. 3-21) — метода изучения всех белков данного типа клеток или конкретного органа (протеом). Оба этих метода очень полезны при исследованиях регуляции метаболизма. Изменения протеома часто влекут за собой изменения всего ансамбля низкомолекулярных метаболитов — метаболома.

После того как в результате действия регуляторных механизмов, контролирующих синтез и деградацию белка, в клетке образовалось определенное количество каждого фермента, активность этих ферментов и далее подвержена регуляции: путем изменения концентрации субстратов; путем воздействия аллостерических эффекторов; путем ковалентной модификации; или путем связывания регуляторных белков. Все эти процессы могут изменять активность отдельных молекул фермента (рис. 15-2, (7)-(10)).

Все ферменты чувствительны к концентрации своих субстратов (рис. 15-2, (7)). Вспомните, что в простейшем случае (в условиях кинетики Михаэлиса-Ментен) начальная скорость реакции равна половине максимальной скорости при концентрации субстрата, равной значению К м (т. е. при полунасыщении фермента субстратом). При уменьшении концентрации субстрата скорость реакции также уменьшается, а при «К м скорость реакции линейным образом зависит от . Это важно помнить, поскольку внутриклеточная концентрация субстрата часто близка к К м или ниже этого значения. Например, активность гексокиназы зависит от концентрации глюкозы, а внутриклеточная концентрация глюкозы изменяется с концентрацией глюкозы в крови. Как мы увидим далее, различным формам (изоформам) гексокиназы соответствуют разные К м, и, следовательно, присутствие различных изоформ гексокиназы зависит от внутриклеточной концентрации глюкозы, что имеет определенное физиологическое значение.

Пример 15-1. Активность переносчика глюкозы

Если для переносчика глюкозы в печени (GLU Т2) Кt (эквивалент К м) = 40 мМ, определите изменение скорости поступления (потока) глюкозы в гепатоциты при повышении концентрации глюкозы в крови от 3 до 10 мМ.

Решение. Для определения начальной скорости поступления глюкозы используем уравнение 11-1 (т. 1, с. 555).

При 3 мМ глюкозы

V 0 = V m ах (3 мМ)/(40 мМ + 3 мМ) = V m ах (3 мМ/43 мМ) = 0,07 V m ах При 10 мМ глюкозы

V 0 = V m ах (10 мМ)/(40 мМ + 10 мМ) = V m ах (10 мМ/50 мМ) = 0,20 V m ах

Таким образом, если концентрация глюкозы в крови увеличилась от 3 до 10 мМ, то это значит, что скорость потока глюкозы в гепатоциты повысилась почти в 3 раза (0,20/0,07).

Ферментативная активность может увеличиваться или уменьшаться под действием аллостерических эффекторов (рис. 15-2, (8); см. также рис. 6-34). Под влиянием аллостерических эффекторов кинетика реакции обычно вместо гиперболической становится S -образной, или наоборот (например, см. рис. 15-14, б). В наиболее крутой части S -образной кривой небольшие изменения концентрации субстрата или аллостерического эффектора могут значительно влиять на скорость реакции. Как мы обсуждали в гл. 5 (с. 239, т. 1), для описания поведения аллостерических ферментов пользуются коэффициентом кооперативности Хилла, причем большое значение этого коэффициента означает более высокую кооперативность. Для аллостерического фермента с коэффициентом Хилла, равным 4, трехкратное увеличение концентрации субстрата приводит к увеличению скорости реакции от 0,1 Vm ах до 0,9 Vm ах, тогда как для фермента, не обладающего свойством кооперативности (коэффициент Хилла 1; см. табл. 15-2), для такого же изменения ферментативной активности требуется повышение концентрации субстрата в 81 раз!

Ковалентные модификации уже существующего фермента или другого белка (рис. 15-2, (9)) происходят за секунды-минуты с момента поступления сигнала, как правило, внеклеточного. Самая распространенная модификация — это фосфорилирование-дефосфорилирование (рис. 15-3); до половины всех белков в эукариотической клетке при определенных условиях подвергаются фосфорилированию. Фосфорилирование может изменить электростатические свойства активного центра фермента, сместить ингибирующий участок белка подальше от активного центра, повлиять на взаимодействие данного белка с другими молекулами или вызвать конформационные изменения, приводящие к изменениям Vm ах и К м. Для осуществления регуляции необходимо, чтобы после ковалентной модификации клетка могла вернуть белок к его исходному состоянию. Семейство фосфопротеинфосфатаз, некоторые члены которого сами находятся под контролем, катализируют дефосфорилирование белков, которые были фосфорилированы протеинкиназами.

Таблица 15-2. Соотношение между коэффициентом Хилла и влиянием концентрации субстрата на скорость реакции для аллостерических ферментов

Рис. 15-3. Фосфорилирование-дефосфорилирование белка. Протеинкиназы переносят фосфорильную группу от АТР на остатки Ser, Thr или Туr в белке. Протеинфосфатазы удаляют фосфорильную группу в виде P i .

Наконец, регуляция многих ферментов достигается путем связывания с регуляторными белками (рис. 15-2, (10)). Например, сАМР- зависимая протеинкиназа (РКА; см. рис. 12-6) остается неактивной до тех пор, пока в результате связывания сАМР каталитические и регуляторные субъединицы фермента разделены.

Рассмотренные механизмы влияния на скорость определенной реакции метаболического пути не исключают друг друга. Достаточно часто один и тот же фермент подвергается регуляции на уровне транскрипции, а также путем аллостерических механизмов и ковалентного связывания. Сочетание этих механизмов обеспечивает быструю и эффективную регуляцию в ответ на самые разнообразные изменения в клетке и поступающие сигналы.

Для последующего обсуждения полезно рассмотреть изменения ферментативной активности при выполнении двух различных, но, тем не менее, взаимодополняющих функций. Термином метаболическая регуляция будем обозначать процесс, направленный на поддержание гомеостаза на молекулярном уровне, т. е. поддержание определенных клеточных параметров (таких как концентрации метаболитов) даже при изменении потока метаболитов в данном метаболическом пути. Термином метаболический контроль будем называть процессы, ведущие к изменению результата метаболического пути во времени в ответ на некоторые внешние сигналы или изменение условий. Следует сказать, однако, что четкую границу между этими двумя понятиями провести не всегда легко.

Обычно в клетке регулируются реакции, далекие от состояния равновесия

На некоторых стадиях метаболического пути реакции приближаются к состоянию равновесия (рис. 15-4). Общий поток метаболитов в таких реакциях определяется небольшой разницей между скоростями прямой и обратной реакций, которые при приближении к состоянию равновесия имеют близкие значения. Небольшие изменения концентрации субстрата или продукта реакции могут сильно изменить общую скорость процесса и даже его направление. Идентифицировать эти почти равновесные реакции в клетке мы можем, если будем сравнивать величины отношения действующих масс Q с константой равновесия реакции К" eq . Вспомните, что для реакции А + В —> С + D Q = [С]/[А][В]. Считается, что, когда Q и К" eq различаются лишь на 1-2 порядка, реакция близка к равновесию. Например, это наблюдается для шести из 10 реакций гликолиза (табл. 15-3).

Рис. 15-4. Равновесные и неравновесные стадии метаболизма. В клетке стадии (2) и (3) данного пути почти равновесны; скорости их прямых реакций лишь немного превышают скорости обратных реакций, так что общая скорость (10) довольно низкая, а изменение свободной энергии ∆G′ для каждой из этих стадий близко к нулю. Повышение внутриклеточной концентрации метаболитов С или D может изменить направление этих стадий. Стадия (1) в клетке далека от равновесия — скорость прямой реакции намного превосходит скорость обратной реакции. Общая скорость стадии (1) (10) много больше скорости обратной реакции (0,01) и в стационарном состоянии равна скоростям стадий (2) и (3). Стадия (1) характеризуется большим отрицательным значением ∆G′.

Многие реакции в клетке, однако, далеки от равновесия. Например, для реакции гликолиза, катализируемой фосфофруктокиназой-1 (РРК-1), К" eq ≈ 1000, а для типичной клетки в стационарном состоянии Q = [фруктозо-1,6-бисфосфат][АD Р]/ [фруктозо-6-фосфат][АТР]) ≈ 0,1 (табл. 15-3). Именно благодаря тому, что эта реакция так далека от равновесия, во внутриклеточных условиях данный процесс экзергонический и протекает в прямом направлении. Эта реакция далека от равновесия, поскольку при обычных внутриклеточных концентрациях субстрата, продукта и эффектора скорость превращения фруктозо-6- фосфата в фруктозо-1,6-бисфосфат ограничена активностью PFK -1, что регулируется числом молекул PFK -1 и действием эффекторов. Таким образом, скорость прямого процесса совпадает со скоростью общего потока интермедиатов гликолиза в других реакциях данного пути, а скорость обратного потока в реакции с участием PFK -1 практически равна нулю.

Таблица 15-3. Константы равновесия, отношения действующих масс и изменения свободной энергии ферментативных реакций при метаболизме углеводов

К" eq

Отношение действующих масс, Q

Печень Сердце

Реакция in vivo близка к равновесию?*

∆G′ (кДж/моль)

∆G′ в сердце (кДж/моль)

Гексокиназа

PFK-1

9 . 10 -2

3 . 10 - 2

Альдолаза

Триозофосфатизомераза

Глицеральдегид-3-фосфатдегидрогеназа +

фосфоглицераткиназа

Фосфоглицератмутаза

Пируваткиназа

Фосфоглюкоизомераза

Пируваткарбоксилаза + ФЕП-карбооксикиназа

Глюкозо-6-фосфатаза

* Для простоты считают, что все реакции, для которых ∆G′ <6, близки к равновесию.

Клетка не может допустить, чтобы реакции с большими значениями констант равновесия приближались к равновесию. Если при обычных клеточных концентрациях фруктозо-6-фосфата, АТР и ADP (несколько миллимолей) катализируемая PFK -1 реакция могла бы достигать равновесия, то концентрация фруктозо-1,6-бисфосфата оказалась бы в молярном диапазоне, что привело бы к гибели клетки из-за высокого осмотического давления.

Рассмотрим другой пример. Если в клетке реакция АТР —> ADP + Рi могла бы приблизиться к равновесию, для этой реакции изменение свободной энергии ∆G′ —> 0 (∆Gp ; см. пример 13-2, с. 31); в результате АТР утратил бы свой высокий потенциал переносчика фосфатных групп, который так необходим клетке. Поэтому очень важно, чтобы ферменты, катализирующие разложение АТР и другие экзергонические реакции в клетке, были подвержены регуляции, т. е. при изменении метаболических процессов в результате внешних воздействий реакции с участием этих ферментов корректировались таким образом, чтобы концентрация АТР оставалась гораздо выше равновесного уровня. При подобных изменениях метаболизма происходит корректировка активностей ферментов во всех взаимосвязанных метаболических путях, что не позволяет критическим стадиям достичь равновесия. Поэтому неудивительно, что многие ферменты (такие как PFK -1), катализирующие реакции с большим отрицательным изменением свободной энергии, тонко регулируются множеством различных способов. Эта регуляция происходит настолько сложным путем, что при изучении свойств только одного фермента метаболического пути нельзя определить, насколько большое влияние оказывает этот фермент на ход процесса в целом; для этого надо привлечь теорию контроля метаболизма, к которой мы обратимся в разд. 15.2.

Адениновые нуклеотиды играют особую роль в регуляции метаболизма

Возможно, вторая по важности задача клетки (после защиты от повреждений ДНК) — это поддержание постоянных запасов АТР. Многие АТР- зависимые ферменты имеют К м между 0,1 и 1 мМ, а нормальная концентрация АТР в клетке составляет 5 мМ. Если концентрация АТР была бы значительно ниже, эти ферменты не могли бы достичь насыщения своим субстратом (АТР), в результате чего снизилась бы скорость сотен реакций, происходящих с участием АТР (рис. 15-5). Клетка, вероятно, не смогла бы пережить такого кинетического воздействия на столь большое число реакций.

Кроме того, уменьшение концентрации АТР имеет важные термодинамические последствия. Поскольку при выполнении работы в клетке АТР превращается в ADP или АМР, соотношение / оказывает глубокое влияние на течение всех реакций, в которых задействованы эти кофакторы. Это же относится и к другим кофакторам— NADH /NAD + и NADPH /NADP + .

Рис. 15-5. Влияние концентрации АТР на начальную скорость реакции, катализируемой типичным АТР- зависимым ферментом. На основании этих экспериментальных данных для АТР К м ≈ 5 мМ. В тканях животных концентрация [АТР] ≈ 5 мМ.

Например, рассмотрим реакцию, катализируемую гексокиназой:

Заметьте, что это выражение верно только в том случае, когда исходные вещества и продукты реакции находятся в равновесных концентрациях, при которых ∆G′ = 0. При любых других концентрациях ∆G′ ≠ 0. Вспомните (гл. 13), что отношение концентраций продуктов реакции к концентрациям субстратов (отношение действующих масс Q определяет величину и знак ∆G′ и, следовательно, движущую силу (∆G′) реакции:

Поскольку изменение этой движущей силы влияет на все реакции с участием АТР, в процессе эволюции организмы выработали регуляторные механизмы, ответственные за поддержание соотношения /.

Концентрация АМР гораздо чувствительнее к энергетическому состоянию клетки, чем концентрация АТР. Обычно в клетках концентрация АТР (5-10 мМ) гораздо выше, чем концентрация АМР (<0,1 мМ). При расходовании АТР, например при мышечном сокращении, АМР образуется в результате двустадийного процесса. Сначала при гидролизе АТР образуется ADP , а затем в результате действия аденилаткиназы — АМР:

2ADP АМР + АТР

При уменьшении концентрации АТР на 10% относительное увеличение концентрации АМР более значительно, чем для ADP (табл. 15-4). Поэтому неудивительно, что многие регуляторные процессы связаны именно с концентрацией АМР. Важную роль как медиатор регуляции играет AMP -зависимая протеинкиназа, которая при повышении концентрации АМР начинает фосфорилировать ключевые белки, регулируя тем самым их активность. Увеличение [АМР] может быть связано с недостаточным поступлением питательных веществ или с большой физической нагрузкой. Действие АМР-зависимой протеинкиназы (не путайте с сАМР-зависимой протеинкиназой, см. разд. 15.5) усиливает транспорт глюкозы, активирует гликолиз и окисление жирных кислот, но в то же время подавляет такие энергозатратные процессы, как синтез жирных кислот, холестерина и белков (рис. 15-6). В гл. 23 мы подробнее обсудим этот фермент и механизм его действия в указанных процессах.

Таблица 15-4. Относительные изменения концентраций АТР и АМР при расходовании АТР или функциональных групп

Рис. 15-6. Роль AMP -зависимой протеинкиназы (АМРК) в метаболизме жиров и углеводов. Во время физических нагрузок АМРК активируется в ответ на увеличение концентрации АМР или уменьшение концентрации АТР сигналами от симпатической нервной системы (СНС) или гормонов жировой ткани (лептина и адипонектина, подробнее см. гл. 23). Активированная АМРК фосфорилирует ключевые белки и тем самым регулирует метаболизм во многих тканях, подавляя такие энергозатратные процессы, как синтез гликогена, жирных кислот и холестерина; направляет обмен веществ вне печени на использование жирных кислот в качестве топливных молекул; а в печени запускает глюконеогенез для обеспечения мозга глюкозой. В гипоталамусе АМРК стимулирует пищевое поведение так, чтобы организм получил больше питательных веществ.

Наряду с АТР в клетке в необходимых концентрациях должны присутствовать сотни интермедиатов метаболизма. Например, интермедиаты гликолиза дигидроксиацетонфосфат и 3-фосфоглицерат служат предшественниками триацилглицеринов и серина соответственно. При необходимости скорость гликолиза должна корректироваться таким образом, чтобы обеспечить необходимое количество этих веществ без снижения уровня образования АТР. Эта же закономерность справедлива для других важных кофакторов, таких как NADH и NADPH : изменение отношения их действующих масс (т. е. отношение концентрации восстановленной формы кофактора к концентрации его окисленной формы) оказывает очень сильное влияние на метаболизм.

Конечно, на эволюционное развитие регуляторных механизмов влияли также приоритеты, возникающие в жизнедеятельности целого организма. В головном мозге млекопитающих запасы энергии практически отсутствуют, поэтому деятельность мозга полностью зависит от поступления глюкозы по кровотоку. Когда уровень глюкозы крови уменьшается в 2 раза по сравнению с нормой (4-5 мМ), происходит нарушение мозговой деятельности, а 5-кратное снижение уровня глюкозы крови приводит к состоянию комы и к смерти. Поддерживать уровень глюкозы крови в норме помогают гормоны инсулин и глюкагон, выделяющиеся при повышенном и пониженном содержании глюкозы соответственно; эти гормоны запускают серию метаболических реакций, направленных на нормализацию уровня глюкозы.

Кроме того, в ходе эволюции должно было осуществляться и другое селективное воздействие, приведшее к отбору регуляторных механизмов, направленных на решение вполне определенных задач.

1. Обеспечение максимальной эффективности использования энергии путем предотвращения одновременного протекания реакций противоположно направленных метаболических путей (например, гликолиза и глюконеогенеза).

2. Распределение метаболитов между альтернативными метаболическими путями (такими как гликолиз и пентозофосфатный путь).

3. Выбор наиболее подходящего источника энергии для решения текущих задач организма (глюкоза, жирные кислоты, гликоген или аминокислоты).

4. Остановка путей биосинтеза при накоплении его продуктов.

В последующих главах представлено множество примеров регуляторных механизмов каждого типа.

Краткое содержание раздела 15.1. Регуляция метаболических путей

■ В клетке с активным метаболизмом, находящейся в стационарном состоянии, интермедиаты метаболизма образуются и расходуются с одинаковой скоростью. Если в результате каких-либо воздействий скорость образования или расходования метаболита изменяется, в клетке происходит компенсаторное изменение активностей ферментов, приводящее к восстановлению стационарного состояния.

■ Клетки регулируют свой метаболизм с помощью различных механизмов во временном диапазоне от миллисекунд до нескольких суток, изменяя активность уже существующих ферментов или количество синтезируемых молекул специфического фермента.

■ Различные сигналы могут активировать или инактивировать факторы транскрипции, которые регулируют экспрессию генов в ядре клетки. Изменения в транскриптоме приводят к изменениям в протеоме и, в итоге, в метаболоме клетки или ткани.

■ В многостадийных процессах, таких как гликолиз, некоторые реакции в стационарном состоянии близки к равновесию; скорости этих реакций контролируются концентрацией субстрата и уменьшаются и увеличиваются при ее изменении. Другие реакции далеки от равновесия; обычно они контролируют потоки веществ целиком в данном метаболическом пути.

■ Регуляторные механизмы направлены на поддержание в клетках практически постоянного уровня ключевых метаболитов, таких как АТР и NADH , или глюкозы крови; при изменении потребностей организма используются запасы гликогена.

Химические реакции, протекающие в клетках, катализируются ферментами. Неудивительно поэтому, что большинство способов регуляции обмена веществ основано на двух ведущих процессах: изменении концентрации ферментов и их активности. Эти способы регуляции метаболизма характерны для всех клеток и осуществляются с помощью разнообразных механизмов в ответ на сигналы разного рода. Кроме этого, клетки владеют дополнительными способами регуляции метаболизма, многообразие которых удобно рассмотреть в соответствии с несколькими уровнями организации.

Регуляция на уровне транскрипции . Этот тип регуляции рассмотрен в главе 3 на нескольких примерах положительного и отрицательного контроля транскрипции прокариотических генов. Данный механизм характерен, в первую очередь, для регуляции количества мРНК, определяющих структуру ферментов, а кроме этого - белков-гистонов, рибосомальных, транспортных белков. Группа последних, не обладая каталитической активностью, также принимает большое участие в изменении скорости соответствующих процессов (формирование хромосом и рибосом, транспорт веществ через мембраны), а значит, и метаболизма в целом.

В регуляции транскрипции генов участвуют регуляторные белки, структура которых определяется специфическими генами (регулято-рами), их комплексы с лигандами (например, лактозой при индукции транскрипции или триптофаном при репрессии), комплексы сАМР-САР, гуанозинтетрафосфат, а в некоторых случаях таким действием обладают белки - продукты экспрессии собственных генов. Особое значение в данных процессах имеют такие важные сигнальные молекулы, как сАМР и гуанозинтетрафосфат. Можно сказать, что сАМР сигнализирует клетке об энергетическом голоде-отсутствии глюкозы. В ответ на это увеличивается частота транскрипции структурных генов, отвечающих за катаболизм других источников углерода и энергии (активация катаболитных оперонов, катаболитная репрессия, глава 3). Гуанозинтетрафосфат (гуанозин-5’-дифосфат-3’-дифосфат) является сигналом аминокислотного голодания. Этот нуклеотид связывается с РНК-полимеразой и изменяет ее сродство к промоторам различных генов. В реультате экспрессия генов, ответственных за биосинтез углеводов, липидов, нуклеотидов и др. уменьшается, а экспрессия других генов, в частности детерминирующих процессы протеолиза белков, наоборот, повышается.

Процесс транскрипции чаще регулируется с помощью изменения частоты событий инициации транскрипции, но, кроме этого, могут регулироваться скорость элонгации транскрипции и частота ее преждевременной терминации. На события элонгации и терминации первостепенное влияние оказывает конформационное состояние ДНК или самой мРНК (наличие «стоп-сигналов», шпилечных структур).


Аллостерическая регуляция активности ферментов . Этот тип регуляции является одним из самых быстрых и гибких, он осуществляется с помощью молекул-эффекторов, взаимодействующих с аллостерическим центром фермента (глава 6). Аллостерической регуляции, как и оперонной, подвержены ключевые ферменты тех или иных метаболических путей. Таким образом, скорость всего биосинтетического или катаболического процесса зависит от одной, реже нескольких реакций, катализируемых ключевыми ферментами.

Особое значение регуляция имеет для процессов биосинтеза протеиногенных аминокислот. Поскольку их 20, и каждая в суммарном клеточном белке у разных организмов представлена в определенном отношении, требуется очень четкая регуляция, координирующая процессы синтеза отдельных аминокислот. Такой контроль исключает перепроизводство аминокислот, и выделение их из клетки возможно лишь у микроорганизмов с нарушенной регуляцией.

Пример регуляции биосинтеза аминокислот семейства аспартата у энтеробактерий представлен на рис. 19.3. Четыре аминокислоты имеют общий предшественник - аспарагиновую кислоту. Ее превращение в аспартилфосфат у бактерий E.coli катализируют три изоферментные формы аспартокиназы, каждая из которых испытывает репрессию и/или ингибирование со стороны разных конечных продуктов данного разветвленного метаболического пути. Аналогичным способом регулируется синтез гомосериндегидрогеназы.

Обращает на себя внимание существование механизма обратной связи , который заключается в том, что конечные продукты метаболических процессов регулируют уровень синтеза и/или активность ферментов, катализирующих первые этапы образования этих метаболитов.

Аллостерическими эффекторами могут выступать самые различные вещества: субстраты и конечные продукты метаболических путей, иногда - промежуточные метаболиты; в катаболических процессах-нуклеозиддифосфаты и нуклеозидтрифосфаты, а также переносчики восстановительных эквивалентов; в каскадных реакциях - сАМР и сGMP, которые регулируют активность ферментов (например, протеинкиназ), участвующих в ковалентной модификации белков; ионы металлов и множество иных соединений. Примеры аллостерической регуляции ферментов приведены в главе 6 и др. разделах.

Ковалентная модификация ферментов . Этот тип регуляции активности ферментов иначе называют взаимопревращениями ферментов, поскольку суть данного процесса состоит в превращении активных форм ферментов в неактивные и наоборот. Особенности и примеры ковалентной модификации описаны в главе 6. Эти процессы находятся под разнообразным контролем, в том числе и гормональным. Классическим примером взаимопревращений ферментов является регуляция метаболизма гликогена в печени.

Скорость синтеза этого резервного полисахарида находится под контролем гликоген-синтазы, а расщепление катализируется гликогенфосфорилазой. Оба фермента могут пребывать в активной и неактивной формах. При голодании или в стрессовых ситуациях в кровь выделяются гормоны - адреналин и глюкагон, которые связываются с рецепторами на плазматических мембранах клеток и активируют при посредничестве G-белков фермент аденилатциклазу (катализирует синтез сАМР). сАМР связывается с протеинкиназой А и активирует ее, что приводит к фосфорилированию гликоген-синтазы и переводу ее в неактивную форму. Гликоген перестает синтезироваться. Кроме этого, протеинкиназа А в ходе каскадных реакций вызывает фосфорилирование гликоген-фосфорилазы, которая в результате активируется и начинает расщеплять гликоген. На процессы синтеза и распада гликогена действует также другой гормон-инсулин. В этом примере сигнальными молекулами служат гормоны, а посредниками - G-белок и сАМР. Взаимопревращения ферментов осуществляются в ходе фосфорилирования-дефосфорилирования.

Гормональная регуляция. Этот тип регуляции метаболизма предусматривает участие гормонов - сигнальных веществ, образующихся в клетках эндокринных желез, поэтому гормональная регуляция свойственна только высшим организмам. Выше описано действие гормонов на процесс обмена гликогена, в котором регулируется активность ферментов на уровне ковалентной модификации. Кроме этого, гормоны способны оказывать воздействие на скорость транскрипции (оперонная регуляция).

Из специализированных клеток, где происходит синтез гормонов, последние поступают в кровь и переносятся к клеткам-мишеням, имеющим рецепторы, способным связывать гормоны и тем самым воспринимать гормональный сигнал. Связывание гормона рецептором запускает каскад реакций с участием молекул-посредников, которые завершаются клеточным ответом. Липофильные гормоны связываются с внутриклеточным рецептором (белок) и регулируют транскрипцию определенных генов. Гидрофильные гормоны действуют на клетки-мишени за счет связывания с рецепторами на плазматической мембране.

Кроме гормонов, аналогичным действием обладают другие сигнальные вещества: медиаторы, нейромедиаторы, ростовые факторы. Четкой границы, позволяющей отличать гормоны от перечисленных веществ, нет. Медиаторами называют сигнальные вещества, которые продуцируются не железами внутренней секреции, а различными типами клеток. К медиаторам относят гистамин, простагландины, которые обладают гормоноподобным действием.

Нейромедиаторами считают сигнальные вещества, продуцируемые клетками центральной нервной системы.

Изменение концентрации метаболитов . Важным условием, обеспечивающим высокую скорость того или иного метаболического пути, является концентрация субстратов. Она может зависеть от интенсивности протекания других процессов, в которых также расходуются эти субстраты (конкуренция), или от скорости транспорта данных веществ через мембраны (плазматическую или органелл). В частности, у эукариотических клеток появляется возможность регулировать метаболизм, перераспределяя метаболиты по отдельным компартментам.

Кроме этого, скорость метаболических процессов определяется концентрацией кофакторов. Например, гликолиз и ЦТК регулируются доступностью ADP (глава 10, 11) на уровне изменения активности ключевых аллостерических ферментов.

Посттранскрипционная и посттрансляционная модификация макромолекул . Эти процессы также описаны в соответствующих разделах (глава 3). Модификация и/или процессинг первичных РНК-транскриптов осуществляются с разной скоростью, от чего зависит концентрация зрелых молекул РНК, способных транслироваться, а значит, и интенсивность белкового синтеза. В свою очередь, пептиды, прежде чем превратиться в зрелый белок, также должны модифицироваться, и если это касается ферментов, то речь идет об их ковалентной модификации.

Что еще почитать