Теплонасосные установки нового поколения и их использование в качестве высокоэффективной энергосберегающей и экологически чистой энерготехнологии для горячего водоснабжения.

Имея в своем доме холодильники и кондиционеры, мало кто знает - принцип работы теплового насоса реализован именно в них.

Около 80% мощности, которую дает тепловой насос, приходится на тепло окружающей среды в виде рассеянного солнечного излучения. Именно его насос просто «перекачивает» с улицы в дом. Работа теплового насоса подобна принципу работы холодильника, вот только направление переноса тепла иное.

Проще говоря…

Чтобы охладить бутылку минеральной воды, Вы ее ставите в холодильник. Холодильник должен «забрать» у бутылки часть тепловой энергии и, согласно закону сохранения энергии, ее куда-то переместить, отдать. Холодильник переносит теплоту на радиатор, обычно расположенный на задней его стенке. При этом радиатор нагревается, отдавая свое тепло в помещение. Фактически он отапливает помещение. Это особенно заметно в маленьких минимаркетах летом, при нескольких включенных холодильниках в помещении.

Предлагаем пофантазировать. Предположим, что мы будем постоянно подкладывать теплые предметы в холодильник, а он будет, охлаждая их, нагревать воздух в помещении. Пойдем на «крайности»… Расположим холодильник в оконном проеме открытой дверкой «морозилки» наружу. Радиатор холодильника будет находиться в помещении. В процессе работы холодильник будет охлаждать воздух на улице, перенося в помещение «забранную» теплоту. Так и работает тепловой насос, забирая рассредоточенное тепло у окружающей среды и перенося его в помещение.

Где насос берет тепло?

Принцип работы теплового насоса базируется на «эксплуатации» естественных низкопотенциальных источников тепла из окружающей среды.


Ими могут быть:

  • просто наружный воздух;
  • тепло водоемов (озер, морей, рек);
  • тепло грунта, грунтовых вод (термальных и артезианских).

Как устроен тепловой насос и система отопления с ним?

Тепловой насос интегрирован в систему отопления, которая состоит из 2-х контуров + третий контур - система самого насоса. По внешнему контуру циркулирует незамерзающий теплоноситель, который забирает на себя тепло из окружающего пространства.

Попадая в тепловой насос, точнее его испаритель, теплоноситель отдает в среднем от 4 до 7 °C хладагенту теплового насоса. А его температура кипения составляет -10 °C. Вследствие этого хладагент закипает с последующим переходом в газообразное состояние. Теплоноситель внешнего контура, уже охлажденный уходит на следующий «виток» по системе для набора температуры.

В составе функционального контура теплового насоса «числятся»:

  • испаритель;
  • компрессор (электрический);
  • капилляр;
  • конденсатор;
  • хладагент;
  • терморегулирующее управляющее устройство.

Процесс выглядит приблизительно так!

«Закипевший» в испарителе хладагент по трубопроводу поступает в компрессор, работающих от электроэнергии. Этот «трудяга» сжимает газообразный хладагент до высокого давления, что, соответственно, приводит к повышению его температуры.

Теперь уже горячий газ далее попадает во другой теплообменник, который называется конденсатором. Здесь тепло хладагента передается воздуху помещения или теплоносителю, который циркулирует по внутреннему контуру системы отопления.

Хладагент остывает, одновременно переходя в состояние жидкости. Затем он проходит через капиллярный редукционный клапан, где «теряет» давление и вновь попадает в испаритель.

Цикл замкнулся и готов к повтору!

Приблизительный расчет теплопроизводительности установки

В течении часа по внешнему коллектору через насос протекает до 2,5-3 м 3 теплоносителя, который земля способна нагреть на ∆t = 5-7 °C.

Для расчета тепловой мощности такого контура воспользуйтесь формулой:

Q = (T_1 — T_2)*V_тепл

V_тепл - объемный расход теплоносителя в час (м^3/час);

T_1 — T_2 - разница температур на входе и входе (°C) .


Разновидности тепловых насосов

По типу используемого вида рассеянного тепла различают тепловые насосы:

  • грунт-вода (используют закрытые грунтовые контуры или глубокие геотермальные зонды и водяную систему отопления помещения);
  • вода-вода (используют открытые скважины для забора и сброса грунтовых вод - внешний контур не закольцованный, внутренняя система отопления - водяная);
  • вода-воздух (использование внешних водяных контуров и системы отопления воздушного типа);
  • (использование рассеянного тепла внешних воздушных масс в комплекте с воздушной системой отопления дома).

Преимущества и достоинства тепловых насосов

Экономичная эффективность. Принцип работы теплового насоса базируется не на производстве, а на переносе (транспортировке) тепловой энергии, то можно утверждать, что его КПД больше единицы. Что за чушь? - скажете Вы.В теме тепловых насосов фигурирует величина - коэффициент преобразования (трансформации) тепла (КПТ). Именно по этому параметру сравнивают между собой агрегаты подобного типа. Его физический смысл – показать отношение полученного количества теплоты к величине, затраченной для этого, энергии. К примеру, при КПТ = 4,8 затраченная насосом электроэнергия в 1кВт позволит получить с его помощью 4,8 кВт тепла безвозмездно, то есть даром от природы.

Универсальная повсеместность применения. Даже при отсутствии доступных линий электропередач работа компрессора теплового насоса может быть обеспечена дизельным приводом. А «природное» тепло есть в любом уголке планеты - тепловой насос «голодным» не останется.


Экологическая чистота использования. В тепловом насосе отсутствуют продукты горения, а его малое энергопотребление меньше «эксплуатирует» электростанции, косвенно снижая вредные выбросы от них. Хладагент, используемый в тепловых насосах, озонобезопасен и не содержит хлоруглеродов.


Двунаправленный режим работы. Тепловой насос может в зимнее время обогревать помещение, а в летнее - охлаждать. Отобранную из помещения «теплоту» можно использовать эффективно, например, подогревать воду в бассейне или в системе ГВС.


Безопасность эксплуатации. В принципе работы теплового насоса Вы не рассмотрите опасных процессов. Отсутствие открытого огня и вредных опасных для человека выделений, низкая температура теплоносителей делают тепловой насос «безобидным», но полезным бытовым прибором.

Полная автоматизация процесса отопления помещения.


Некоторые нюансы эксплуатации

Эффективное использование принципа работы теплового насоса требует соблюдения нескольких условий:

  • помещение, которое обогревается должно быть хорошо утеплено (теплопотери до 100 Вт/м 2) - иначе, забирая тепло с улицы, будете греть улицу за свои же деньги;
  • тепловые насосы выгодно применять для низкотемпературных систем отопления. Под такие критерии отлично подходят системы теплый пол (35-40 °C). Коэффициент преобразования тепла существенно зависит от соотношения температур входного и выходного контуров.

Подытожим сказанное!

Суть принципа работы теплового насоса не в производстве, а в переносе тепла. Это позволяет получить высокий коэффициент (от 3 до 5) преобразования тепловой энергии. Проще говоря, каждый использованный 1 кВт электроэнергии «перенесет» в дом 3-5 кВт тепла. Еще что-то нужно говорить?

Теплонасосные установки (ТНУ) используют естественную возобнов­ляемую низкопотенциальную тепловую энергию окружающей среды (воды, воздуха, грунта) и повышают потенциал основного теплоносителя до более высокого уровня, затрачивая при этом в несколько раз меньше первичной энергии или органического топлива. Теплонасосные установки работают по термодинамическому циклу Карно, в котором рабочей жидкостью служат низкотемпературные жидкости (аммиак, фреон и др.). Перенос теплоты от источника низкого потенциала на более высокий температурный уровень осуществляется подводом механической энергии в компрессоре (пароком - прессионные ТНУ) или дополнительным подводом теплоты (в абсорбцион­ных ТНУ).

Применение ТНУ в системах теплоснабжения - одно из важнейших пересечений техники низких температур с теплоэнергетикой, что приводит к энергосбережению невозобновляемых источников энергии и защите ок­ружающей среды за счет сокращения выбросов СО2 и NOx в атмосферу. Применение ТНУ весьма перспективно в комбинированных системах теп­лоснабжения в сочетании с другими технологиями использования возоб­новляемых источников энергии (солнечной, ветровой, биоэнергии) и по­зволяет оптимизировать параметры сопрягаемых систем и достигать наи­более высоких экономических показателей.

Выберем в качестве рабочего хладагента - R 22, имеющего следующие параметры: расход хладагента Оа = 0,06 кг/с; температура кипения Т0 = 3 °С; температура конденсации Тк = 55 °С; температура теплоносителя на входе в испаритель от источника низкого потенциала Ґн = 8 °С; температу­ра теплоносителя (воды) на выходе из конденсатора f = 50 °C; расход теп­лоносителя в конденсаторе Ок = 0,25 кг/с; перепад температур теплоноси­теля в конденсаторе Д4 = 15 °C; мощность, потребляемая компрессором, N = 3,5 кВт; теплопроизводительность ТНУ = 15,7 кВт; коэффициент пре­образования цтн = 4,5.

Принципиальная схема парокомпрессионной ТНУ приведена на рис. 7.2 и включает испаритель, компрессор, конденсатор и дроссель.

4 - расширительный дроссельный клапан; 5 - змеевик испарения хладаген­та;

6 - бак испарения; 7 - вода низкопотенциального источника энергии

8 - сток к НИЭ; 9 - вода из системы отопления или водопровода;

Д.т.н. В.Е. Беляев, главный конструктор ОМКБ Горизонт,
д.т.н. А.С. Косой, заместитель главного конструктора промышленных ГТУ,
главный конструктор проектов,
к.т.н. Ю.Н. Соколов, начальник сектора тепловых насосов ОМКБ Горизонт,
ФГУП «ММПП «Салют», г. Москва

Использование теплонасосных установок (ТНУ) для энергетики, промышленности и предприятий ЖКХ является одним из наиболее перспективных направлений энергосберегающих и экологически чистых энерготехнологий.

Достаточно серьезный анализ состояния и перспектив развития работ в указанной области был сделан на заседании подсекции «Теплофикация и централизованное теплоснабжение» НТС ОАО РАО «ЕЭС России» 15.09.2004 г. .

Необходимость создания и внедрения ТНУ нового поколения связана с:

♦ огромным отставанием Российской Федерации и стран СНГ в области практического внедрения ТНУ, всевозрастающими потребностями крупных городов, удаленных населенных пунктов, промышленности и предприятий ЖКХ в разработке и использовании дешевой и экологически чистой тепловой энергии (ТЭ);

♦ наличием мощных источников низкопотенциального тепла (грунтовые воды, реки и озера, тепловые выбросы предприятий, зданий и сооружений);

♦ всевозрастающими ограничениями в использовании для теплогенерирующих установок природного газа (ПГ);

♦ возможностями использования прогрессивных конверсионных технологий, накопленных в авиадвигателестроении.

В условиях рыночных отношений важнейшими технико-экономическими показателями эффективности энергогенерирующих установок являются себестоимость и рентабельность производимой энергии (с учетом экологических требований) и, как следствие, - минимизация сроков окупаемости энергоустановок.

Основными критериями выполнения этих требований являются:

♦ достижение максимально возможного в энергоустановке коэффициента использования топлива (КИТ) (отношение полезной энергии к энергии топлива);

♦ предельно возможное снижение капитальных затрат и сроков сооружения энергоустановки.

Вышеназванные критерии были учтены при реализации ТНУ нового поколения.

Впервые для практической реализации крупномасштабных ТНУ в качестве рабочего тела предложено использовать водяной пар (R718). Сама идея использования водяного пара для ТНУ не нова (более того, она была использована В. Томсоном при демонстрации работоспособности первой такой реальной машины еще в 1852 г. - прим. авт.). Однако, из-за весьма значительных удельных объемов водяного пара при низких температурах (по сравнению с традиционными хладонами), создание реального компрессора на водяном паре для использования в парокомпрессионных ТНУ до сих пор осуществлено не было.

Основными преимуществами использования водяного пара в качестве рабочего тела для ТНУ по сравнению с традиционными хладонами (фреоны, бутан, пропан, аммиак и др.) являются:

1. Экологическая чистота, безопасность и простота технологического обслуживания, доступность и низкая стоимость рабочего тела;

2. Высокие теплофизические свойства, благодаря которым наиболее дорогие элементы ТНУ (конденсатор и испаритель) становятся компактными и дешевыми;

3. Существенно более высокие температуры теплоносителя к потребителю (до 100 ОС и выше) по сравнению с 70-80 ОС для фреонов;

4. Возможность реализации каскадной схемы повышения температуры от низкопотенциального источника к теплопотребителю (по циклу Лоренца ) с увеличением коэффициента преобразования в ТНУ (kТНУ) по сравнению с традиционными в 1,5-2 раза;

5. Возможность генерирования в ТНУ химически очищенной воды (дистиллята);

6. Возможность использования компрессора и конденсатора ТНУ для:

♦ отсоса водяного пара с выхода теплофикационных турбин с передачей бросового тепла теплопотребителю, приводящего дополнительно к повышению вакуума на выходе из турбины, увеличению ее генерируемой мощности, снижению расхода циркуляционной воды, затрат на ее перекачку и тепловых выбросов в атмосферу ;

♦ отсоса низкопотенциального водяного пара (бросового) из энерготехнологических устано-

вок химического производства, сушильных и др. с передачей бросовой теплоты к теплопотреби-телю;

♦ создания высокоэффективных эжектирую-щих устройств для конденсаторов паровых турбин, отсоса многокомпонентных смесей и т.д.

Принципиальная схема работы ТНУ на водяном паре и ее конструктивные особенности

На рис. 1 показана принципиальная схема работы ТНУ при использовании в качестве рабочего тела водяного пара (R718).

Особенностью предлагаемой схемы является возможность организации отбора теплоты низкотемпературного источника в испарителе за счет непосредственного испарения части подаваемой в него воды (без теплообменных поверхностей), а также возможность передачи теплоты в теплосеть в конденсаторе ТНУ как при наличии теплообменных поверхностей, так и без них (смесительного типа). Выбор типа конструкции определяется привязкой ТНУ к конкретному источнику низкопотенциального источника и требованиями теплопотребителя по использованию поступающего к нему теплоносителя.

Для практической реализации крупномасштабной ТНУ на водяном паре предложено использовать серийно выпускаемый авиационный осевой компрессор АЛ-21, имеющий следующие важные особенности при его использовании для работы на водяном паре:

♦ большую объемную производительность (до 210 тыс. м3/ч) при числе оборотов ротора компрессора около 8 тыс. об/мин;

♦ наличие 10 регулируемых ступеней, позволяющих обеспечить эффективную работу компрессора в различных режимах;

♦ возможность осуществления впрыска воды в компрессор для улучшения эффективности работы, в том числе снижения потребляемой мощности .

Кроме того, для повышения надежности работы и снижения эксплуатационных затрат было принято решение заменить подшипники качения на подшипники скольжения, использовав при этом вместо традиционной масляной системы систему смазки и охлаждения на воде.

Для изучения газодинамических характеристик компрессора при работе на водяном паре в широком диапазоне определяющих параметров, отработки элементов конструкции и демонстрации надежности работы компрессора в условиях натурных испытаний, был создал на полигон-электростанции ТЭЦ-28 ОАО «Мосэнерго» крупномасштабный испытательный стенд (замкнутого типа, диаметр трубопроводов 800 мм, длина около 50 м ).

В результате проведения испытаний были получены следующие важные результаты:

♦ подтверждена возможность эффективной и устойчивой работы компрессора на водяном паре при n=8000-8800 об/мин с объемным расходом водяного пара до 210 тыс. м3/ч.

♦ продемонстрирована возможность достижения глубокого вакуума на входе в компрессор (0,008 ата);

♦ экспериментально полученный коэффициент сжатия в компрессоре πκ=5 в 1,5 раза превысил требуемое значение для ТНУ с коэффициентом преобразования 7-8;

♦ отработана надежная конструкция подшипников скольжения компрессора на воде.

В зависимости от условий эксплуатации ТНУ предлагается 2 типа ее компоновки : вертикальная (ТНУ в одном агрегате) и горизонтальная.

Для ряда модификаций предлагаемой вертикальной компоновки ТНУ возможна замена трубчатого конденсатора на конденсатор оросительного типа. В этом случае конденсат рабочего тела ТНУ смешивается с теплоносителем (водой) к потребителю. Стоимость ТНУ при этом снижается примерно на 20%.

В качестве привода компрессора ТНУ может быть использован:

♦ встроенный турбопривод мощностью до 2 МВт (для ТНУ производительностью до 15 МВт);

♦ выносные высокооборотные турбоприводы (для ТНУ производительностью до 30 МВт);

♦ газотурбинные двигатели с утилизацией ТЭ с выхода;

♦ электропривод.

В табл. 1 приведены характеристики ТНУ на водяном паре (R718) и фреоне 142.

При использовании в качестве низкопотенциального источника теплоты с температурой 5-25 ОС по технико-экономическим соображениям в качестве рабочего тела ТНУ выбран фреон 142.

Сопоставительный анализ показывает, что для ТНУ на водяном паре капитальные затраты в между водяным теплоносителем и рабочим телом (фреоном).

диапазоне температур низкопотенциального источника:

♦ 25-40 ОС - в 1,3-2 раза ниже, чем для традиционных отечественных ТНУ на фреоне и в 2-3 раза ниже, чем для зарубежных ТНУ;

♦ 40-55 ОС - в 2-2,5 раза ниже, чем для традиционных отечественных ТНУ на фреоне и в 2,5-4 раза ниже, чем для зарубежных ТНУ.

Таблица 1. Характеристики ТНУ на водяном паре и фреоне.

*- при работе на фреоне испаритель и конденсатор ТНУ выполняются с теплообменными поверхностями

**-Т- турбопривод; Г- газотурбинный (газопоршневой); Э - электропривод.

В работе в условиях реальной эксплуатации ТНУ на ТЭЦ была продемонстрирована возможность эффективной передачи в теплосеть сбросной теплоты из паровой турбины с коэффициентом преобразования ТНУ равным 5-6. В предложенной в и показанной на рис. 2 схеме коэффициент преобразования ТНУ будет существенно выше за счет исключения испарителя ТНУ и, соответственно, отсутствия температурного перепада между низкотемпературным источником и рабочим паром на входе в компрессор.

В настоящее время создание высокоэффективных и экологически чистых теплогенерирующих энергоустановок на базе ТНУ является крайне актуальной задачей .

В описаны результаты внедрения ТНУ различного типа для нужд теплоснабжения, промышленных предприятий и ЖКХ.

В на основе реальных испытаний ТНУ на ТЭЦ-28 ОАО «Мосэнерго» предложены 2 конкретные схемы передачи сбросной теплоты в градирни с помощью ТНУ в теплосеть (прямая передача в обратную тепломагистраль и для нагрева подпиточной сетевой воды).

В проанализированы пути создания высокоэффективных компрессионных ТНУ на водяном паре при использовании в качестве низкопотенциального источника теплоты в диапазоне температур от 30 до 65 ОС с газотурбинным приводом компрессора и утилизацией теплоты уходящих газов из ГТУ. Результаты технико-экономического анализа показали, что в зависимости от условий, себестоимость генерируемой теплоты ТНУ может в несколько раз быть ниже (а КИТ в несколько раз выше), чем при традиционной выработке теплоты на ТЭЦ.

В проведен анализ эффективности использования тепловых насосов в централизованных системах горячего водоснабжения (ГВС). Показано, что эта эффективность существенно зависит от действующих тарифов на энергоносители и температуры используемой низкопотенциальной теплоты, поэтому к проблеме использования ТНУ необходимо подходить взвешенно, с учетом всех конкретных условий.

ТНУ в качестве альтернативного источника ГВС потребителей централизованного теплоснабжения в отопительный период

В настоящей работе, на основе накопленного опыта, анализируется возможность и технико-экономические показатели более углубленного по сравнению с использования ТНУ для ГВС, в частности, практически 100% вытеснения теплоты от традиционных ТЭЦ на эти цели в отопительный период.

Для примера рассмотрена возможность реализации такого подхода для наиболее крупного Московского региона РФ при использовании в качестве бросовой теплоты двух источников:

♦ теплоты естественных природных водных источников: Москва-реки, озер, водоемов и других со средней температурой около 10 ОС;

♦ сбросной теплоты канализационных стоков и других источников;

♦ сбросной теплоты в градирни (с выхода паровых турбин ТЭЦ в отопительный период в режиме вентиляционного пропуска с температурой пара на выходе 30-35 ОС). Суммарная величина этой теплоты составляет около 2,5 тыс. МВт.

В настоящее время на нужды ГВС Московского региона расходуется около 5 тыс. МВт ТЭ (примерно 0,5 кВт на 1 чел.). Основное количество теплоты для ГВС поступает от ТЭЦ по системе централизованного теплоснабжения и осуществляется на ЦТП московской городской теплосети. Нагрев воды на ГВС (от ~10 ОС до 60 ОС) осуществляется, как правило, в 2-х последовательно включенных теплообменниках 7 и 8 (рис. 3) сначала от теплоты сетевой воды в обратной тепломагистрали и затем от теплоты сетевой воды в прямой тепломагистрали. При этом на нужды ГВС расходуется ~650-680 т у.т./ч ПГ.

Реализация схемы расширенного (комплексного) использования вышеуказанных источников бросовой теплоты для ГВС с помощью системы двух ТНУ (на фреоне и водяном паре, рис. 4) позволяет в отопительный период практически 100% скомпенсировать около 5 тыс. МВт теплоты (соответственно, сэкономить огромное количество ПГ, уменьшить тепловые и вредные выбросы в атмосферу).

Естественно, при наличии действующих ТЭЦ в неотопительный период времени с помощью ТНУ передавать теплоту нецелесообразно, поскольку ТЭЦ из-за отсутствия тепловой нагрузки вынуждены переходить в конденсационный режим работы со сбросом в градирни большого количества теплоты сожженного топлива (до 50%).

Теплонасосная установка ТНУ-1 с рабочим телом на фреоне (R142) может обеспечить нагрев воды от ~10 ОС на входе в испаритель 10 до ~35 ОС на выходе из него, используя в качестве низкотемпературного природного источника воду с температурой около 10 ОС с kТНУ около 5,5. При использовании в качестве низкотемпературного источника сбросной воды промышленных предприятий или ЖКХ ее температура может значительно превышать 10 ОС. В этом случае kТНУ будет еще выше.

Таким образом, ТНУ-1 может с большой эффективностью обеспечить 50% нагрев воды для ГВС суммарной величиной передаваемой теплоты до 2,5 тыс. МВт и выше. Масштабы внедрения таких ТНУ достаточно велики. При средней единичной тепловой мощности ТНУ-1 около 10 МВт только для Московского региона потребовалось бы около 250 таких ТНУ.

При kТНУ=5,5 на привод компрессоров ТНУ необходимо затратить около 450 МВт электрической или механической мощности (при приводе, например, от ГТУ). Теплонасосные установки ТНУ-1 должны устанавливаться вблизи от тепло-потребителя (на ЦТП городской теплосети).

Теплонасосные установки ТНУ-2 устанавливаются на ТЭЦ (рис. 4) и используют в отопительный период в качестве низкотемпературного источника пар с выхода теплофикационных турбин (вентиляционный пропуск части низкого давления (ЧНД)). При этом, как уже отмечалось выше, пар с температурой 30-35 ОС поступает непосредственно в компрессор 13 (рис. 2, испаритель ТНУ отсутствует) и после его сжатия подается в конденсатор 14 теплонасосной установки ТНУ-2 на нагрев воды из обратной сетевой магистрали.

Конструктивно пар может отбираться, например, через предохранительный (сбросной) клапан ЧНД паровой турбины 1. Компрессор 13, создавая существенно более низкое давление на выходе из ЧНД турбины 1 (чем при отсутствии ТНУ-2), соответственно, снижает температуру конденсации (насыщения) пара и «отключает» конденсатор турбины 3.

На рис. 4 схематично показан случай, когда бросовая теплота передается конденсатором 14 в обратную тепломагистраль до ПСВ 4. В этом случае даже при передаче всей бросовой теплоты с выхода ЧНД турбины в обратную тепломагистраль температура перед ПСВ увеличится всего на ~5 ОС, незначительно повысив при этом давление греющего пара из отбора турбины на ПСВ 4.

Более эффективно передать сначала часть сбросной теплоты на нагрев подпиточной сетевой воды (вместо ее традиционного нагрева отборным паром из турбины), а затем уже остаток сбросной теплоты отдать в обратную тепломагистраль (на рис. 4 этот вариант не показан).

Важным результатом предлагаемого подхода является возможность вытеснения с помощью дополнительно установленных на ТЭЦ ТНУ-2 в отопительный период применительно к Московскому региону до 2,5 тыс. МВтТЭ (передаваемых пиковыми водогрейными котлами). При единичной мощности ТНУ-2 на водяном паре равной ~6-7 МВт для передачи такого количества теплоты потребовалось бы 350-400 таких установок.

Учитывая весьма низкий уровень температурного перепада в ТНУ (~15 ОС между низкотемпературным источником и температурой обратной сетевой воды), коэффициент преобразования ТНУ-2 будет еще более высоким (kТНУ ~6,8), чем для ТНУ-1. При этом для передачи в теплосеть ~2,5 тыс. МВтТЭ необходимо суммарно затратить около 370 МВт электрической (или механической) энергии.

Таким образом, суммарно с помощью ТНУ-1 и ТНУ-2 в отопительный период на нужды ГВС Московского региона можно передать до 5 тыс. МВт ТЭ. В табл. 2 дана технико-экономическая оценка такого предложения.

В качестве привода ТНУ-1 и ТНУ-2 может быть использован газотурбинный привод с N=1 -5 МВт и КПД 40-42% (за счет регенерации теплоты уходящих газов). При затруднениях, связанных с установкой на ЦТП городской теплосети ГТУ (дополнительный подвод ПГ и др.), в качестве привода для ТНУ-1 может использоваться электропривод.

Технико-экономические оценки сделаны для тарифов на топливо и ТЭ на начало 2005 г. Важным результатом анализа является существенно более низкая себестоимость генерируемой ТЭ с помощью ТНУ (для ТНУ-1 - 193 руб./Гкал и ТНУ-2 - 168 руб./Гкал) по сравнению с традиционным способом ее генерирования на ТЭЦ ОАО «Мосэнерго».

Известно, что в настоящее время себестоимость ТЭ, рассчитанная по так называемому «физическому способу разделения топлива на производство электроэнергии и тепла», значительно превышает 400 руб./Гкал (тариф на ТЭ). При таком подходе производство тепла даже на самых современных ТЭЦ является нерентабельным, и эта убыточность компенсируется увеличением тарифов на электроэнергию.

На наш взгляд, такая методика разделения затрат топлива некорректна, но до сих пор используется, например, в ОАО «Мосэнерго».

По нашему мнению, приведенные в табл. 2 сроки окупаемости ТНУ (от 4,1 до 4,7 лет) не являются большими. При расчете принято 5 тыс. часов работы ТНУ в году. В действительности, в летний период времени эти установки могут работать по примеру передовых западных стран в режиме централизованного холодоснабжения, существенно улучшая при этом среднегодовые технико-экономические показатели работы.

Из табл. 2 видно, что КИТ для указанных ТНУ варьируется в диапазоне от~2,6 до~3,1, что более чем в 3 раза превышает его значение для традиционных ТЭЦ. С учетом пропорционального снижения тепловых и вредных выбросов в атмосферу, затрат на перекачку и потери циркуляционной воды в системе: конденсатор турбины - градирня, повышения вакуума на выходе ЧНД турбин (при работе ТНУ-2) и, соответственно, генерируемой мощности, технико-экономические преимущества указанного предложения будут еще более значительными.

Таблица 2. Технико-экономическое обоснование использования ТНУ на водяном паре и фреоне.

Наименование Размерность Тип ТНУ
ТНУ-1 на фреоне ТНУ-2 на водяном паре
1 Температура низкотемпературного источника °С 10 35
2 Температура к потребителю °С 35 45-55
3 Q-гну (единичная) МВт 10 6-7
4 Q ТНУ для ГВС, суммарная Q утилизации тепла с выхода ГГУ* Q суммарная к потребителю МВт 2500 -450 -2950 2500 -370 -2870
5 кТНУ - 5,5 6,8
6 Суммарная мощность ГТД на привод компрессоров МВт -455 -368
7 Суммарный расход ПГ на ГТД компрессора τ у.т./ч 140 113
8 Q топлива на ГТД МВт 1138 920
9 КИТ - 2,59 3,12
10 Удельная стоимость сооружения ТНУ с ГТД приводом долл. США/кВт тыс. долл. США/Гкал 220 256 200 232
11 Суммарные капитальные затраты млн долл. США -649 -574
12 Число часов использования в году ч 5000
13 Затраты в год, из них: - топливо (1230 руб./т у.т.); - амортизационные отчисления (6,7%/год); - прочие (обслуживание, ФЗП и др.). млн руб. 2450 862 1218 370 2070 695 1075 300
14 Стоимость всего объема вырабатываемой ТЭ в год (400 руб./Гкал или 344 руб./МВтч) млн руб. 5070 4936
15 Себестоимость ТЭ руб./Гкал 193 168
16 Прибыль в год млн руб. млн долл. США 2620 -94 2866 -102
17 Срок окупаемости (с возвратом амортизационных отчислений) в годах -4,7 -4,1

* - дополнительная теплота при утилизации тепла уходящих газов из газотурбинных приводных установок может быть использована для вытеснения части теплоты от ТЭЦ на централизованное теплоснабжение.

С учетом неизбежного роста цен на энергоносители при вступлении России в ВТО, ограничений на использование ПГ для энергетики и потребностей широкого внедрения высокоэффективных энергосберегающих и экологически чистых энерготехнологий технико-экономические преимущества внедрения ТНУ будут неизменно расти.

Литература

1. Новое поколение тепловых насосов для целей теплоснабжения и эффективность их использования в условиях рыночной экономики // Материалы заседания подсекции Теплофикации и централизованного теплоснабжения НТС ОАО РАО «ЕЭС России», Москва, 15 сентября 2004 г.

2. АндрюшенкоА.И. Основы термодинамики циклов теплоэнергетических установок. - М.: Высш. школа, 1985 г.

3. Беляев В.Е., Косой А.С., Соколов Ю.Н. Способ получения тепловой энергии. Патент РФ № 2224118 от 05.07.2002г., ФГУП«ММПП«Салют».

4. Середа С.О., Гельмедов Ф.Ш., Сачкова Н.Г. Расчетные оценки изменения характеристик многоступенчатого

компрессора под влиянием испарения воды в его проточной части, ММПП «Салют»-ЦИАМ// Теплоэнергетика. 2004. №11.

5. Елисеев Ю.С., Беляев В.В., Косой А.С., Соколов Ю.Н. Проблемы создания высокоэффективной парокомпрес-сионной установки нового поколения. Препринт ФГУП «ММПП «Салют», май 2005.

6. ДевянинД.Н., Пищиков С.И., Соколов Ю.Н. Разработка и испытание на ТЭЦ-28 ОАО «Мосэнерго» лабораторного стенда по апробации схем использования ТНУ в энергетике // «Новости теплоснабжения». 2000. № 1. С. 33-36.

7. Проценко В. П. О новой концепции теплоснабжения РАО «ЕЭС России» // Энерго-пресс, № 11-12, 1999.

8. Фролов В.П., Щербаков С.Н., Фролов М.В., Шелгин-ский А.Я. Анализ эффективности использования тепловых насосов в централизованных системах горячего водоснабжения // «Энергосбережение». 2004. №2.

Тепловой насос – это целая отопительная система, способная обогреть частный дом не хуже традиционного, привычного нам отопления. Понятно, что для того чтобы насос запустить в работу, сначала нужно его правильно установить.

Все теплонасосы, в зависимости от того, от какого природного источника они забирают тепло, делятся на три основных вида: грунт-вода, вода-вода, воздух-вода.

Монтаж каждого из этих видов имеет свои нюансы и особенности. – достаточно сложная конструкция и его установка это процесс трудоемкий, к которому нужно подойти с большой ответственностью. В статье мы рассмотрим, на что нужно обратить внимание при монтаже различных видов тепловых насосов.

Правила монтажа теплонасоса типа грунт–вода

Схема работы насоса системы «грунт-вода» (нажмите для увеличения)

Грунт является источником тепла. Углубившись на 5 метров в землю, можно заметить, что температура там остается практически одной и той же целый год (в большинстве регионов России – 8-10°C).

Благодаря этому отопление будет высокоэффективным. Работает система следующим образом: грунтовый теплообменник, находящийся в земле, собирает энергию, которая аккумулирует в теплоносителе, после чего перемещается в теплонасос и возвращается обратно .

Схема работы насоса системы «вода-вода» (нажмите для увеличения)

Часть энергии, излучаемой солнцем, остается под водой, особенно в толще воды. На дно водоема или в грунт дна укладывают специальные трубы, отягощенные грузом.

Большая температура теплоносителя в зимний период обеспечивает большую эффективность и теплопередачу. Но, увы, не подходит для установки в частных домах.

Более или менее для небольших домов подойдет вариант со скважиной. Специальный насос откачивает воду из скважины в испаритель, после чего вода сливается в другую скважину, расположенную ниже по течению и углубленную в подземный слой на 15 метров.

Совет специалиста: перед тем, как пользоваться системой вода-вода, необходимо исключить попадание мусора в испаритель и защитить его от ржавчины, а также установить фильтр. Если вода богата солями, то требуется установка промежуточного теплообменника с циркуляцией в нем чистой воды или антифриза.

Однако если вода из скважины плохо отводится, возможно маленькое наводнение и затопление насоса.

Правила монтажа теплонасоса типа воздух–вода

Схема работы насоса системы «воздух-вода» (нажмите для увеличения)

Менее популярен, чем грунт–вода из-за того, что в зимний период из воздуха невозможно отобрать достаточное количество тепла. -20°C – предел работы теплового насоса, после чего в работу вступает дополнительный тепловой генератор.

Основные схемы установки:

  1. Моноблочные конструкции монтируются в помещении, все оборудование собрано в одном корпусе. Гибкий воздуховод соединяет механизм с улицей. Также изготавливают и внешние моноблоки.
  2. Технология сплит включает в себя два блока, соединенных друг с другом.
  3. Один расположен на улице, другой – в здании. В первом установлен вентилятор с испарителем, а во втором – автоматика и конденсатор. Компрессор разрешается ставить как в доме, так и на улице.

Возьмите на заметку: выбирая воздушные тепловые насосы, учтите, что при похолодании мощность теряется почти вдвое.

В новых тепловых насосах данного типа внедрили функцию, позволяющую собирать тепло из помещения, вентиляционных выбросов и дымовых газов. Благодаря этому существует возможность отапливать помещение и греть проточную воду.

Покупая тепловой насос, нужно ориентироваться на конкретные потребности своего дома.

В идеале нужно знать теплопотери дома и климат, в котором расположено жилище. Эти данные важны для того, чтобы правильно выбрать мощность теплонасоса, и его модель.

Но нужно помнить и то, что подобрав теплонасос, нужно так же верно выбрать все составляющие отопительной системы, в которой теплонасос будет функционировать.

Невозможно найти универсальный теплонасос, так как каждая система отопления уникальна.
И все же, все отопительные системы с этим устройством имеют общие критерии, которые влияют на схему подключения теплонасоса:

  • наличие дополнительного источника тепла (отопительный котел, солнечная батарея, печь);
  • наличие водяных контуров (теплый пол, фанкойлы, радиаторы);
  • необходимость горячего водоснабжения;
  • наличие кондиционера;
  • наличие системы вентиляции;
  • тип теплонасоса.

Если учесть эти нюансы и ваши индивидуальные потребности, то вы сможете сделать правильный выбор и стать обладателем надежной, долговечной и экономичной системы отопления.

Смотрите видео, в котором показан весь процесс монтажа теплового насоса:

Отопление дома тепловым насосом избавит вас от энергетического рабства. Выбрав эту систему обогрева, вы навсегда распрощаетесь и с непредсказуемыми коммунальщиками, и с прожорливыми газовщиками. То есть температурный режим в жилище будете определять именно вы. И никто другой.

Согласитесь: только этот факт делает тепловой насос для отопления дома очень выгодным приобретением. Да, он стоит недешево. Но со временем все затраты окупятся, а плата за «коммуналку» или газ для автономного котла только возрастет. А ведь тепловой насос можно сделать и своими руками!

И в данной статье мы познакомим вас с основными типами тепловых насосов. Надеемся, то эта информация поможет вам выбрать (или построить) оптимальную энергетическую установку для обогрева вашего жилища.

Во-первых, такие насосы очень экономичны и эффективны. Вы «вкладываете» 0,2-0,3 КВт электроэнергии, расходуемой на питание компрессора, и получаете 1 КВт тепловой энергии. То есть, без учета энергии воздуха, воды или грунта, КПД теплового насоса равен фантастическим 300-500 процентам.

Во-вторых, такие насосы эксплуатируют, по сути, бесплатный и вечный источник энергии – сам воздух, воду или грунт. Причем этот «источник» распространен повсеместно. То есть, отопление загородного дома тепловым насосом можно реализовать где угодно – хоть на экваторе, хоть за полярным кругом. Правда, чтобы подобраться к такому «источнику» нужно задействовать энергоемкий компрессор. Но за счет нереально высокого КПД все расходы энергии окупаются в пятикратном размере!


В-третьих, тепловой насос всегда индивидуален. То есть вы не платите за избыток энергии. Ваше оборудование будет настроено под конкретные пожелания и условия эксплуатации.

Поэтому отзывы о тепловых насосах для отопления дома бывают либо одобрительными, либо самыми восторженными.

Кроме того, насос не только греет. В теплое время года он может работать и как кондиционер, охлаждая жилище с той же эффективностью.

Согласитесь: все вышеупомянутые достоинства теплового насоса выглядят несколько фантастично. Особенно КПД на уровне 300-500 процентов. Однако, все достоинства тепловых агрегатов – это не вымысел, а угрожающая энергетическим компаниям реальность.

Секрет подобной эффективности кроется в оригинальном принципе работы насоса, который, в кратком изложении, заключается в следующем: циркулирующая по трубам среда отбирает тепло у источника с низким потенциалом (воздух, грунт, скальные породы, вода) и сбрасывает его в выбранной потребителем точке.

То есть, перед нами «вывернутый» холодильник: отбирающий тепло у потенциальных источников с помощью испарителя и отдающий энергию потребителю посредством конденсатора.

Причем и тепловой насос, и холодильник функционируют на хладагенте – веществе с очень низкой температурой кипения, которое перекачивается по трубам с помощью особого компрессора.

Подробная схема работы

В итоге, при более детальном рассмотрении схема работы тепловых агрегатов выглядит следующим образом:

  • На глубине 5-6 метров в грунте монтируют циклический трубопровод с теплоносителем, в который встроен особый радиатор – испаритель. Причем эта глубина выбрана не случайно – на такой отметке температура держится выше нуля в любое время года.
  • К испарителю подводят второй трубопровод с залитым хладагентом. Под высоким давлением хладагент вскипает даже при одном градусе Цельсия. Причем процесс испарения, как известно из школьного курса физики, сопровождается поглощением энергии, отбираемой у циркулирующего в грунте теплоносителя.
  • Пары хладагента выкачиваются из трубопровода компрессором, который не только транспортирует эту среду по арматуре, но и генерирует еще большее давление, провоцирующее дополнительный разогрев хладагента.
  • Далее перегретые пары хладагента закачиваются (тем же компрессором) в конденсатор, где происходит трансформация агрегатного состояния вещества (пар превращается в жидкость). А все те же основы термодинамики утверждают, что при конденсации газообразной среды происходит выделение энергии.
  • Выделенное тепло, генерируемое в конденсаторе, поглощает уже третий трубопровод – система теплоснабжения жилища. То есть конденсатор выступает в роли газового или электрического котла. Ну а вернувшийся в жидкое состояние хладагент возвращается к испарителю, проходя сквозь регулирующий дроссель.

Тепловые насосы для отопления дома: типовые разновидности

Самый удобный способ классификации тепловых насосов предполагает разделение подобных агрегатов по типу среды, в которой проложен первичный контур, питающий теплом испаритель.

И согласно этому способу классификации тепловые насосы делятся на следующие разновидности:

  • Геотермальные агрегаты (земля-вода).
  • Гидротермальные насосы (вода-вода).
  • Аэротермальные установки (воздух-вода).

Причем все виды тепловых насосов эксплуатируют общий принцип работы, но среда «обитания» первичного контура накладывает свой отпечаток и на функционирование, и на обустройство агрегата. Поэтому далее по тексту мы рассмотрим нюансы обустройства каждой разновидности тепловых насосов.

Установка «земля-вода»

Тепловой насос «земля-вода»

Первичный контур геотермального насоса заглубляют в грунт до отметки 5-6 метров. Причем такой монтаж практикуют при обустройстве систем с горизонтальным теплообменником. А в случае монтажа вертикального первичного контура практикуется и 150-метровое заглубление, в особую скважину.

При этом минимальный объем работ характерен именно для вертикального размещения первичного контура. Поскольку при горизонтальном размещении необходимо распределить трубы теплообменника по слишком большой площади (50 квадратный метров на каждую 1000 Ватт энергетической отдачи теплового насоса).

Ну а в качестве теплоносителя геотермальный тепловой насос использует совершенно безвредный соляной раствор, незамерзающий даже при отрицательных температурах.

Насос «вода-вода»

Первичный контур гидротермального насоса можно инсталлировать в естественный или искусственный водоем, обычный или сточный колодец, реку или рукотворный канал.

Тепловой насос «вода-вода»

Причем испаритель и труба с теплоносителем погружаются в воду, как минимум, на 1,5-2 метра. Ведь поверхностные слои могут замерзнуть, повредив и функциональность, и целостность элементов теплового насоса.

Словом, для геотермального насоса придется подобрать «правильный» водоем. А вот сама инсталляция первичного контура происходит достаточно просто – полимерную трубу с тем же соляным раствором «топят» на нужной глубине, используя особы грузила.

И такой способ размещения первичного контура превращает обустройство насосной станции «вода-вода» в чрезвычайно простую и нетрудоемкую операцию. Поэтому, если поблизости есть подходящий водоем, то лучшим вариантом теплового насоса будет именно гидротермальный агрегат.

Агрегат «воздух вода»

По сути, это тот же кондиционер, правда, много больших размеров. Первичный контур с испарителем размещается «на воздухе», за пределами жилища, в специальном корпусе.

Причем для обеспечения работоспособности насоса в зимнее время этот корпус очень часто объединяют с вытяжным каналом вентиляционной системы жилища.

Словом, основное достоинство данной системы – простота монтажа, а вот эффективность работы насосов «воздух-вода» весьма сомнительна. Ну а в наших широтах они попросту не могут конкурировать с геотермальными или гидротермальными установками.

Тепловой насос своими руками: возможно ли это?

Разумеется, да! Вот только эффективность такой системы будет практически не прогнозируема. Ведь «заводские» агрегаты – это не только три компрессора и такое же количество трубопроводов, по которым циркулирует теплоноситель и хладагент. Сердцем такого теплового насоса является блок управления, координирующий работу первого, второго и третьего контуров всей системы. И создать такой управляющий блок «своими силами» практически невозможно.

Ну а техническая часть насоса реализуется очень просто:

  • Вместо компрессора можно использовать блок кондиционера.
  • Первичный контур собирают из полиэтиленовых труб и заполняют концентрированным раствором поваренной соли.
  • Испаритель – это металлический бак из нержавейки (его можно извлечь из старой стиральной машины), в который спускают соляной раствор, отдающий тепло медному змеевику вторичного контура, вмонтированному во внутреннюю часть этого бака.
  • Конденсатор – это точно такой же бак, только из пластика, внутри которого монтируется точно такой же медный змеевик. Причем компрессор качает хладагент между нижним и верхним змеевиками.
  • Ну а третий контур – система отопления – подключается к полимерному конденсатору.

Как видите: все очень просто. Вот только эффективность такой системы может быть и чрезмерной, и явно недостаточной.

Что еще почитать