Устройство и принцип действия холодильной машины. Принцип действия холодильной установки Схемы холодильные установки и где их используют

Обычному человеку, как правило, нет необходимости разбираться в принципе действия холодильной машины, для него важен результат. Результатом работы холодильной установки является: охлажденные продукты – от замороженных овощей, до мясо-молочной продукции или например охлажденный воздух, если речь идет о сплит-системах.

Другое же дело, когда холодильные машины выходит из строя и для проведения ремонта холодильных установок требуется вызов специалиста. В данном случае уже было бы не плохо разбираться в принципе работы таких агрегатов. Хотя бы для того, чтобы понимать необходимость замены или ремонта составляющей холодильной машины.

Основное назначение холодильной установки – это забор тепла от охлаждаемого тела и перенос этого тепла или энергии другому объекту или телу. Для понимания процесса требуется уяснить простую вещь – если мы нагреваем или сжимаем тело, то мы сообщаем этому телу энергию (или тепло), охлаждая и расширяя, мы отбираем энергию. Это основной принцип, на основе которого и построен перенос тепла.

В холодильной машине для переноса тепла применяются хладагенты – рабочие вещества холодильной машины, которые при кипении и в процессе изотермического расширения отнимают теплоту от охлаждаемого объекта и затем после сжатия передают её охлаждающей среде за счёт конденсации

Холодильный компрессор 1 отсасывает газообразный хладагент – фреон из испарителей 3, сжимает его и нагнетает в конденсатор 2. В конденсаторе 2 фреон конденсируется и переходит в жидкое состояние. Из конденсатора 2 жидкий хладагент попадает в ресивер 4, где происходит его накопление. Ресивер оснащен запорными вентилями 19 на входе и выходе. Из ресивера хладагент поступает в фильтр-осушитель 9, где происходит удаление остатков влаги, примесей и загрязнений, после этого проходит через смотровое стекло с индикатором влажности 12, соленоидный вентиль 7 и дросселируется терморегулирующим вентилем 17 в испаритель 3.

В испарителе хладагент кипит, забирая тепло от объекта охлаждения. Пары хладагента из испарителя через фильтр на всасывающей магистрали 11, где они отчищаются от загрязнений, и отделитель жидкости 5 поступают в компрессор 1. Затем цикл работы холодильной установки повторяется.

Отделитель жидкости 5 предотвращает попадание жидкого хладагента в компрессор. Для обеспечения гарантированного возврата масла в картер компрессора, на выходе из компрессора устанавливаться маслоотделитель 6. При этом масло через запорный вентиль 24, фильтр 10 и смотровое стекло 13 по линии возврата – поступает в компрессор.

Виброизоляторы 25, 26 на всасывающей и нагнетательной магистралях гасят вибрации при работе компрессора и препятствуют их распространению по холодильному контуру.

Компрессор оснащён картерным нагревателем 21 и двумя запорными вентилями 20. Картерный нагреватель 21 выпаривает хладагент из масла, предотвращая конденсацию хладагента в картере компрессора во время его стоянки и поддержания заданной температуры масла.

Процесс охлаждения в холодильной машине основан на физическом явлении поглощения тепла при кипении () жидкости. Температура кипения жидкости зависит от физической природы жидкости и от давления окружающей" среды. Чем выше давление, тем выше температура жидкости и, наоборот, чем ниже давление, тем при более низкой температуре жидкость закипает и испаряется. При одинаковых условиях разные жидкости имеют разные температуры кипения, так, например, при нормальном атмосферном давлении вода закипает при температуре +100°С, этиловый спирт +78°С, R-22 минус 40,8°С, фреон R-502 минус 45,6°С, фреон R-407 минус 43,56°С, жидкий азот минус 174°С.

Жидкий фреон, являющийся в настоящее время основным хладагентом холодильной машины, находящийся в открытом сосуде при нормальном атмосферном давлении, немедленно вскипает. При этом происходит интенсивное поглощение тепла из окружающей среды, сосуд покрывается инеем из-за конденсации и замораживания паров воды из окружающего воздуха. Процесс кипения жидкого фреона будет продолжаться до тех пор, пока весь фреон не перейдет в газообразное состояние, либо давление над жидким фреоном не возрастет до определенного уровня и при этом не прекратится процесс испарения его из жидкой фазы.

Аналогичный процесс кипения хладагента происходит в холодильной машине, с той лишь разницей, что кипение хладагента происходит не в открытом сосуде, а в специальном, герметичном узле- теплообменнике, который носит название - . При этом кипящий в трубках испарителя хладагент активно поглощает тепло от материала трубок испарителя. В свою очередь материал трубок испарителя омывается жидкостью или воздухом и как результат процесса происходит охлаждение жидкости или воздуха.

Для того, чтобы процесс кипения хладагента в испарителе происходил непрерывно, необходимо постоянно из испарителя удалять газообразный и «подливать» жидкий хладагент.

Для отвода выделяемого тепла используется алюминиевый теплообменник с оребренной поверхностью, называемый конденсатором. Для удаления паров хладагента из испарителя и создания необходимого для конденсации давления используется специальный насос - компрессор.

Элементом холодильной установки является также регулятор потока хладагента, так называемая дроссилирующая . Все элементы холодильной машины соединяются трубопроводом в последовательную цепь, обеспечивая тем самым замкнутую систему.

Принцип работы холодильных установок. Видео

На сегодняшний день наш быт мы не можем представить без приборов, которые охлаждают продукты. Даже на производстве реализовать технологический процесс невозможно без холодильных машин. Так, получается, что холодильные установки необходимы нам повседневной жизни, включая производство и торговлю.

Использовать естественное охлаждение не всегда можно, учитывая сезонность, и возможность снизить температуру максимум до температуры воздуха, а летом это и вовсе не реально. И здесь начинается наша необходимость в приобретении холодильника. основан на том, чтобы при помощи техники реализовать процесс испарения и выработать конденсат.

Среди преимуществ холодильных установок можно выделить автоматическую работу поддержания постоянной низкой температуры, которая будет оптимальной для конкретной категории продуктов. Но это касается фактической пользы, а если брать во внимание и затраты на эксплуатацию, ремонт и техническое обслуживание, то холодильник и вовсе получается выгодной техникой.

Принцип работы холодильной машины основан на охлаждении – физическом процессе, базирующимся на потреблении выделяемого машиной тепла в результате кипения жидкости. С каким показателем температуры жидкая среда доходит до кипения – будет зависеть от происхождения жидкости и уровня оказываемого давления.

Высокий показатель давления – высокая температура кипения. Ровно в такой же зависимости работает этот процесс и обратно: ниже давление – меньше температура закипания и испарения жидкости.

Химические свойства каждого вида жидкости качественно влияют на температуру, необходимую для закипания. Так, например, вода, закипает при 100 градусах, а жидкому азоту необходимо -174 градуса по Цельсию.

Рассмотрим жидкий фреон. Этот хладагент является самым популярным веществом, которым насыщена вся система холодильного оборудования. Кстати, фреон в обычных условиях в открытой емкости может закипеть даже при нормальном показателе атмосферного давления. Причем, этот процесс начнется немедленно, как только фреон сконтактирует с воздухом.


Данное явление непременно сопровождается поглощением окружающего тепла. Вы сможете наблюдать, как сосуд будет покрываться инеем, потому что происходит конденсация и замораживание водных паров воздуха. Это действие завершится только тогда, когда хладагент примет газообразное состояние, или не увеличится давление над фреоном, чтобы прекратить испарение и остановить превращение жидкого фреона в газообразный.

Так можно описать принцип работы холодильной машины простыми словами . Аналогичный цикл выполняет жидкий фреон в системе холодильника. Разница заключается в том, что сосуд не открытый, а специальный – не имеющий доступа воздуху, именуемый узлом теплообменником, а если быть точнее – испарителем.

Закипающий в испарителе хладагент переходит в активную фазу поглощения тепла, исходящего от шланг узла-теплообменника. А трубки, а точнее их материал, будут омываться жидкостью, а это напрямую связано с процессом охлаждения воздуха. Такой процесс не должен прерываться, он постоянный. Для его поддержания необходимо регулярное кипение фреона в испарителе, а значит – постоянное удаление газообразного хладагента и добавление его в жидком состоянии.

Конденсация пара жидкого фреона требует температуру ровно такую, какой она будет в зависимости от атмосферного давления. Выше показатель давления – выше градус для конденсации. Давление в 23 атмосферы необходимо, что конденсировать пары фреона R22, в то время как температура будет равна +55 градусам.

Пары хладагента во время превращения их в жидкость выделяют большое количество тепла в окружающую среду. Холодильник для такого процесса имеет специальный, абсолютно герметичный тепловой обменник, называемым конденсатором. Он предназначен для отвода выделенной тепловой энергии. Выглядит конденсатор как алюминиевый элемент, имеющий ребристую поверхность.


Чтобы пары фреона вывести из испарителя, а давление создать такое, которое будет оптимально благоприятным для конденсации, необходимо специальное насосное устройство – компрессор. Кроме того, в холодильной установке не обойтись без работы регулятора потока фреона. Эта функция отведена дросселирующей капиллярной трубке. Каждый из элементов холодильной системы соединяется между собой трубопроводом, образуя последовательную цепочку – так круг системы замыкается.

Принцип работы холодильной установки на фреоне

Предполагает выполнение реального цикла, который существенно отличается от теоретического. Разница заключается в присутствии такого понятия, как потеря давления. Происходит это во время реального цикла на клапанах компрессора (подробнее о видах компрессора читайте здесь: ) и на его обвязке в частности. Такие потери в последствии необходимо компенсировать.

Для этого следует добиться увеличения работы сжатия, что понизит результативность цикла. В суть этого параметра вложены соотношение мощности агрегата и мощности, необходимой для работы компрессора. А вот насколько эффективно работает установка – параметр сравнительный, который никак не отражается на производительности холодильника.

Принцип работы холодильной установки на фреоне для сравнения: эффективность работы 3,5, то есть на 1 единицу электрической энергии для данной системы приходится 3,5 единицы холода, который она производит. Эффективность машины будет возрастать с ростом данного показателя.

Чтобы сориентироваться при выходе из строя кухонного оборудования, многие домохозяйки вынуждены разбираться в принципе работы многих устройств, таких как: электроплита, микроволновая печь, холодильник и другие. Главная функция холодильной камеры - сохранение питательных продуктов в свежем состоянии, поэтому она должна работать постоянно, а услугами специалиста по ремонту невозможно воспользоваться мгновенно. Понимание того, как работает холодильник, поможет сэкономить финансовые и временные ресурсы, а многие неисправности можно будет починить своими руками.

Внутреннее устройство холодильника

Всем известно как работает холодильник, простыми словами - это оборудование замораживает и охлаждает самые разные продукты, позволяя избежать их порчи в течение некоторого времени.

При этом далеко не все знают определенные особенности данного устройства: из чего состоит холодильник, откуда берется холод во внутренней плоскости камеры, как он создается рефрижератором и почему устройство время от времени выключается.

Чтобы разобраться в данных вопросах, необходимо подробно рассмотреть принцип работы холодильника . Для начала отметим, что холодные воздушные массы возникают не сами: уменьшение температуры воздуха осуществляется внутри камеры в процессе функционирования агрегата.

Данное холодильное оборудование включает в себя несколько основных частей:

  • хладагент;
  • испаритель;
  • конденсатор;
  • компрессор.

Компрессор - это своеобразное сердце любой холодильной установки . Этот элемент отвечает за циркуляцию хладагента по большому количеству специальных трубочек, часть которых расположена сзади холодильника. Остальные части замаскированы во внутренней части камеры под панелью.

При работе компрессор, как и всякий мотор, подвергается значительному нагреву, поэтому ему необходимо некоторое время для остывания. Чтобы этот агрегат не утратил работоспособность из-за перегрева, в него встроено реле, размыкающее электроцепь при определенных температурных показателях.

Трубки, расположенные на наружной поверхности холодильного оборудования - это конденсатор. Он предназначен для выделения тепловой энергии наружу. Компрессор, осуществляя перекачку хладагента, отправляет его внутрь конденсатора посредством высокого давления. В итоге вещество с газообразной структурой (изобутан или фреон) становится жидким и начинает нагреваться. Лишнее тепло при этом рассеивается в помещении, чтобы охлаждение хладагента произошло естественным путем. Именно по этой причине запрещено устанавливать нагревательные приборы рядом с холодильниками.

Хозяева, которые знают о принципе работы холодильного шкафа, стараются устроить своему «кухонному помощнику» самые оптимальные условия для охлаждения конденсатора и компрессора. Это позволяет продлить срок его эксплуатации .

Для получения холода во внутренней камере есть иная часть трубочной системы, в которое сжиженное газообразное вещество отправляется после конденсатора - она называется испарителем. Этот элемент отделен от конденсатора осушающим фильтром и капилляром. Прицип охлаждения внутри камеры :

  • Оказываясь в испарителе, фреон начинает закипать и расширяться, вновь преобразуясь в газ. При этом осуществляется поглощение тепловой энергии.
  • Трубки, находящиеся в камере, охлаждают не только воздушные массы агрегата, но и охлаждаются сами.
  • Затем хладагент снова отправляется в компрессор, и цикл повторяется.

Для того чтобы питательные продукты не заледенели внутри холодильника, в оборудование встроен терморегулятор. Специальная шкала дает возможность выставить необходимую степень охлаждения, и после достижения нужных значений оборудование автоматически выключается.

Однокамерные и двухкамерные модели

Агрегат, охлаждающий воздух, в каждом рефрижераторе имеет общий принцип устройства. Однако отличия в функционировании разного оборудования все же имеются. Они основываются на особенностях перемещения хладагента в холодильных шкафах с одной или парой камер.

Схема, которая была представлена чуть выше, характерна для моделей однокамерного типа. Независимо от места расположения испарителя принцип функционирования будет единым . Однако если морозильная камера расположена под или над охлаждающим отсеком, то для стабильной и полноценной работы рефрижератора необходим дополнительный компрессор. Для морозилки принцип работы будет прежним.

Охлаждающий отсек, в котором температурные показатели не опускаются ниже нулевой отметки, запускается лишь после того, как морозильник охладился в достаточной степени и выключился. Как раз в это мгновение хладагент из морозильной системы отправляется в камеры с положительной температурой, и цикл испарения/конденсации проходит уже на более низком уровне, потому невозможно точно сказать, сколько нужно проработать холодильному оборудованию до автоматического выключения. Тут все зависит от настройки терморегулятора и объема камеры-морозилки.

Функция быстрой заморозки

Данная функция характерна для двухкамерных холодильников. В таком режиме холодильник может беспрерывно работать достаточно долго. Предназначена же быстрая заморозка для эффективного промораживания продуктов в больших объемах .

После активации опции, на панели зажигаются специальные светодиодные индикаторы, показывающие, что компрессор запущен. Тут нужно учитывать то, что функционирование агрегата не будет остановлено автоматически, а слишком долгая работа холодильника может негативно сказаться на его состоянии.

После ручного отключения установки индикаторы сами погаснут, а компрессорный привод выключится.

Современные холодильники оснащены большим количеством самых разных функций. И сегодня домохозяйки знают о существовании функции автоматической разморозки. Необмерзающие и капельные холодильные системы сделали человеческую жизнь гораздо проще, но принцип действия холодильника остался прежним.

Что еще почитать